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1. Scope

1.1 These practices cover a guide for the multivariate
calibration of infrared spectrometers used in determining the
physical or chemical characteristics of materials. These prac-
tices are applicable to analyses conducted in the near infrared
(NIR) spectral region (roughly 780 to 2500 nm) through the
mid infrared (MIR) spectral region (roughly 4000 to 400
cm−1).

NOTE 1—While the practices described herein deal specifically with
mid- and near-infrared analysis, much of the mathematical and procedural
detail contained herein is also applicable for multivariate quantitative
analysis done using other forms of spectroscopy. The user is cautioned that
typical and best practices for multivariate quantitative analysis using other
forms of spectroscopy may differ from practices described herein for mid-
and near-infrared spectroscopies.

1.2 Procedures for collecting and treating data for develop-
ing IR calibrations are outlined. Definitions, terms, and cali-
bration techniques are described. Criteria for validating the
performance of the calibration model are described.

1.3 The implementation of these practices require that the
IR spectrometer has been installed in compliance with the
manufacturer’s specifications. In addition, it assumes that, at
the times of calibration and of validation, the analyzer is
operating at the conditions specified by the manufacturer.

1.4 These practices cover techniques that are routinely
applied in the near and mid infrared spectral regions for
quantitative analysis. The practices outlined cover the general
cases for coarse solids, fine ground solids, and liquids. All
techniques covered require the use of a computer for data
collection and analysis.

1.5 These practices provide a questionnaire against which
multivariate calibrations can be examined to determine if they
conform to the requirements defined herein.

1.6 For some multivariate spectroscopic analyses, interfer-
ences and matrix effects are sufficiently small that it is possible
to calibrate using mixtures that contain substantially fewer
chemical components than the samples that will ultimately be
analyzed. While these surrogate methods generally make use
of the multivariate mathematics described herein, they do not
conform to procedures described herein, specifically with

respect to the handling of outliers. Surrogate methods may
indicate that they make use of the mathematics described
herein, but they should not claim to follow the procedures
described herein.

1.7 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:
D 1265 Practice for Sampling Liquified Petroleum (LP)

Gases (Manual Method)2

D 4057 Practice for Manual Sampling of Petroleum and
Petroleum Products3

D 4177 Practice for Automatic Sampling of Petroleum and
Petroleum Products3

D 4855 Practices for Comparing Test Methods4

D 6122 Practice for Validation of Multivariate Process In-
frared Spectrophotometers5

D 6299 Practice for Applying Statistical Quality Assurance
Techniques to Evaluate Analytical Measurement System
Performance5

D 6300 Practice for Determination of Precision and Bias
Data for Use in Test Methods for Petroleum Products and
Lubricants6

E 131 Terminology Relating to Molecular Spectroscopy7

E 168 Practices for General Techniques of Infrared Quanti-
tative Analysis7

E 275 Practice for Describing and Measuring Performance
of Ultraviolet, Visible, and Near Infrared Spectrophotom-
eters7

E 334 Practice for General Techniques of Infrared Mi-
croanalysis7

E 456 Terminology Relating to Quality and Statistics8

E 691 Practice for Conducting an Interlaboratory Study to
Determine the Precision of a Test Method8

E 932 Practice for Describing and Measuring Performance

1 These practices are under the jurisdiction of ASTM Committee E13 on
Molecular Spectroscopy and are the direct responsibility of Subcommittee E13.11
on Chemometrics.
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of Dispersive Infrared Spectrometers7

E 1421 Practice for Describing and Measuring Performance
of Fourier Transform Infrared (FT-IR) Spectrometers:
Level Zero and Level One Tests7

E 1866 Guide for Establishing Spectrophotometer Perfor-
mance Tests7

E 1944 Practice for Describing and Measuring Performance
of Fourier Transform Near-Infrared (FT-NIR) Spectrom-
eters: Level Zero and Level One Tests7

3. Terminology

3.1 Definitions—For terminology related to molecular spec-
troscopic methods, refer to Terminology E 131. For terminol-
ogy relating to quality and statistics, refer to Terminology
E 456.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 analysis—in the context of this practice, the process of

applying the calibration model to an absorption spectrum so as
to estimate a component concentration value or property.

3.2.2 calibration—a process used to create a model relating
two types of measured data. In the context of this practice, a
process for creating a model that relates component concen-
trations or properties to absorbance spectra for a set of known
reference samples.

3.2.3 calibration model—the mathematical expression that
relates component concentrations or properties to absorbances
for a set of reference samples.

3.2.4 calibration samples—the set of reference samples
used for creating a calibration model. Reference component
concentration or property values are known (measured by
reference method) for the calibration samples and correlated to
the absorbance spectra during the calibration.

3.2.5 estimate—the value for a component concentration or
property obtained by applying the calibration model for the
analysis of an absorption spectrum.

3.2.6 model validation—the process of testing a calibration
model to determine bias between the estimates from the model
and the reference method, and to test the expected agreement
between estimates made with the model and the reference
method.

3.2.7 multivariate calibration—a process for creating a
model that relates component concentrations or properties to
the absorbances of a set of known reference samples at more
than one wavelength or frequency.

3.2.8 reference method—the analytical method that is used
to estimate the reference component concentration or property
value which is used in the calibration and validation proce-
dures.

3.2.9 reference values—the component concentrations or
property values for the calibration or validation samples which
are measured by the reference analytical method.

3.2.10 spectrometer/spectrophotometer qualification,
n—the procedures by which a user demonstrates that the
performance of a specific spectrometer/spectrophotometer is
adequate to conduct a multivariate analysis so as to obtain
precision consistent with that specified in the method.

3.2.11 surrogate calibration, n—a multivariate calibration
that is developed using a calibration set which consists of
mixtures which contain substantially fewer chemical compo-

nents than the samples which will ultimately be analyzed.
3.2.12 surrogate method, n—a standard test method that is

based on a surrogate calibration.
3.2.13 validation samples—a set of samples used in vali-

dating the model. Validation samples are not part of the set of
calibration samples. Reference component concentration or
property values are known (measured by reference method),
and are compared to those estimated using the model.

4. Summary of Practices

4.1 Multivariate mathematics is applied to correlate the
absorbances measured for a set of calibration samples to
reference component concentrations or property values for the
set of samples. The resultant multivariate calibration model is
applied to the analysis of spectra of unknown samples to
provide an estimate of the component concentration or prop-
erty values for the unknown sample.

4.2 Multilinear regression (MLR), principal components
regression (PCR), and partial least squares (PLS) are examples
of multivariate mathematical techniques that are commonly
used for the development of the calibration model. Other
mathematical techniques are also used, but may not detect
outliers, and may not be validated by the procedure described
in these practices.

4.3 Statistical tests are applied to detect outliers during the
development of the calibration model. Outliers include high
leverage samples (samples whose spectra contribute a statisti-
cally significant fraction of one or more of the spectral
variables used in the model), and samples whose reference
values are inconsistent with the model.

4.4 Validation of the calibration model is performed by
using the model to analyze a set of validation samples and
statistically comparing the estimates for the validation samples
to reference values measured for these samples, so as to test for
bias in the model and for agreement of the model with the
reference method.

4.5 Statistical tests are applied to detect when values esti-
mated using the model represent extrapolation of the calibra-
tion.

4.6 Statistical expressions for calculating the repeatability
of the infrared analysis and the expected agreement between
the infrared analysis and the reference method are given.

5. Significance and Use

5.1 These practices can be used to establish the validity of
the results obtained by an infrared (IR) spectrometer at the time
the calibration is developed. The ongoing validation of esti-
mates produced by analysis of unknown samples using the
calibration model should be covered separately (see for ex-
ample, Practice D 6122).

5.2 These practices are intended for all users of infrared
spectroscopy. Near-infrared spectroscopy is widely used for
quantitative analysis. Many of the general principles described
in these practices relate to the common modern practices of
near-infrared spectroscopic analysis. While sampling methods
and instrumentation may differ, the general calibration meth-
odologies are equally applicable to mid-infrared spectroscopy.
New techniques are under study that may enhance those
discussed within these practices. Users will find these practices
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to be applicable to basic aspects of the technique, to include
sample selection and preparation, instrument operation, and
data interpretation.

5.3 The calibration procedures define the range over which
measurements are valid and demonstrate whether or not the
sensitivity and linearity of the analysis outputs are adequate for
providing meaningful estimates of the specific physical or
chemical characteristics of the types of materials for which the
calibration is developed.

6. Overview of Multivariate Calibration

6.1 The practice of infrared multivariate quantitative analy-
sis involves the following steps:

6.1.1 Selecting the Calibration Set—This set is also termed
the training set or spectral library set. This set is to represent all
of the chemical and physical variation normally encountered
for routine analysis for the desired application. Selection of the
calibration set is discussed in Section 17, after the statistical
terms necessary to define the selection criteria have been
defined.

6.1.2 Determination of Concentrations or Properties, or
Both, for Calibration Samples—The chemical or physical
properties, or both, of samples in the calibration set must be
accurately and precisely measured by the reference method in
order to accurately calibrate the infrared model for prediction
of the unknown samples. Reference measurements are dis-
cussed in Section 9.

6.1.3 The Collection of Infrared Spectra—The collection of
optical data must be performed with care so as to present
calibration samples, validation samples, and prediction (un-
known) samples for analysis in an alike manner. Variation in
sample presentation technique among calibration, validation,
and prediction samples will introduce variation and error which
has not been modeled within the calibration. Infrared instru-
mentation is discussed in Section 7 and infrared spectral
measurements in Section 8.

6.1.4 Calculating the Mathematical Model—The calcula-
tion of mathematical (calibration) models may involve a
variety of data treatments and calibration algorithms. The more
common linear techniques are discussed in Section 12. A
variety of statistical techniques are used to evaluate and
optimize the model. These techniques are described in Section
15. Statistics used to detect outliers in the calibration set are
covered in Section 16.

6.1.5 Validation of the Calibration Model—Validation of
the efficacy of a specific calibration model (equation) requires
that the model be applied for the analysis of a separate set of
test (validation) samples, and that the values predicted for these
test samples be statistically compared to values obtained by the
reference method. The statistical tests to be applied for
validation of the model are discussed in Section 18.

6.1.6 Application of the Model for the Analysis of
Unknowns—The mathematical model is applied to the spectra
of unknown samples to estimate component concentrations or
property values, or both, (see Section 13). Outlier statistics are
used to detect when the analysis involves extrapolation of the
model (see Section 16).

6.1.7 Routine Analysis and Monitoring—Once the efficacy
of calibration equations is established, the equations must be

monitored for continued accuracy and precision. Simulta-
neously, the instrument performance must be monitored so as
to trace any deterioration in performance to either the calibra-
tion model itself or to a failure in the instrumentation perfor-
mance. Procedures for verifying the performance of the analy-
sis are only outlined in Section 22 but are covered in detail in
Practice D 6122. The use of this method requires that a model
quality control material be established at the time the model is
developed. The model QC material is discussed in Section 22.
For practices to compare reference methods and analyzer
methods, refer to Practices D 4855.

6.1.8 Transfer of Calibrations—Transferable calibrations
are equations that can be transferred from the original instru-
ment, where calibration data were collected, to other instru-
ments where the calibrations are to be used to predict samples
for routine analysis. In order for a calibration to be transferable
it must perform prediction after transfer without a significant
decrease in performance, as indicated by established statistical
tests. In addition, statistical tests that are used to detect
extrapolation of the model must be preserved during the
transfer. Bias or slope adjustments, or both, are to be made
after transfer only when statistically warranted. Calibration
transfer, that is sometimes referred to as instrument standard-
ization, is discussed in Section 21.

7. Infrared Instrumentation

7.1 A complete description of all applicable types of infra-
red instrumentation is beyond the scope of these practices.
Only a general outline is given here.

7.2 The IR instrumentation is comprised of two categories,
including instruments that acquire continuous spectral data
over wavelength or frequency ranges (spectrophotometers),
and those that only examine one or several discrete wave-
lengths or frequencies (photometers).

7.2.1 Photometers may have one or a series of wavelength
filters and a single detector. These filters are mounted on a
turret wheel so that the individual wavelengths are presented to
a single detector sequentially. Continuously variable filters
may also be used in this fashion. These filters, either linear or
circular, are moved past a slit to scan the wavelength being
measured. Alternatively, photometers may have several mono-
chromatic light sources, such as light-emitting diodes, that
sequentially turn on and off.

7.3 Spectrophotometers can be classified, based upon the
procedure by which light is separated into component wave-
lengths. Dispersive instruments generally use a diffraction
grating to spatially disperse light into a continuum of wave-
lengths. In scanning-grating systems, the grating is rotated so
that only a narrow band of wavelengths is transmitted to a
single detector at any given time. Dispersion can occur before
the sample (pre-dispersed) or after the sample (post-dispersed).

7.3.1 Spectrophotometers are also available where the
wavelength selection is accomplished without moving parts,
using a photodiode array detector. Post-dispersion is utilized. A
grating can again provide this function, although other meth-
ods, such as a linear variable filter (LVF) accomplish the same
purpose (a LVF is a multilayer filter that has variable thickness
along its length, such that different wavelengths are transmitted
at different positions). The photodiode array detector is used to
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acquire a continuous spectrum over wavelength without me-
chanical motion. The array detector is a compact aggregate of
up to several thousand individual photodiode detectors. Each
photodiode is located in a different spectral region of the
dispersed light beam and detects a unique range of wave-
lengths.

7.3.2 The acousto-optical tunable filter is a continuous
variant of the fixed filter photometer with no moving optical
parts for wavelength selection. A birefrigent crystal (for ex-
ample, tellurium oxide) is used, in which acoustic waves at a
selected frequency are applied to select the wavelength band of
light transmitted through the crystal. Variations in the acoustic
frequency cause the crystal lattice spacing to change, that in
turn, causes the crystal to act as a variable transmission
diffraction grating for one wavelength (that is, a Bragg diffrac-
tor). A single detector is used to analyze the signal.

7.3.3 An additional category of spectrophotometers uses
mathematical transformations to convert modulated light sig-
nals into spectral data. The most well-known example is the
Fourier transform, that when applied to infrared (IR) is known
as FT-IR. Light is divided into two beams whose relative paths
are varied by use of a moving optical element (for example,
either a moving mirror, or a moving wedge of a high refractive
index material). The beams are recombined to produce an
interference pattern that contains all of the wavelengths of
interest. The interference pattern is mathematically converted
into spectral data using the Fourier transform. The FT method
can operate in the mid-IR and near-IR spectral regions. The FT
instruments use a single detector.

7.3.4 A second type of transformation spectrophotometer
uses the Hadamard transformation. Light is initially dispersed
with a grating. Light then passes through a mask mounted on
or adjacent to a single detector. The mask generates a series of
patterns. For example, these patterns may be formed by
electronically opening and shutting various locations, such as
in a liquid crystal display, or by moving an aperture or slit
through the beam. These modulations alter the energy distri-
bution incident upon the detector. A mathematical transforma-
tion is then used to convert the signal into spectral information.

7.4 Infrared instruments used in multivariate calibrations
should be installed and operated in accordance with the
instructions of the instrument manufacturer. Where applicable,
the performance of the instrument should be tested at the time
the calibration is conducted using procedures defined in the
appropriate ASTM practice (see 2.1). The performance of the
instrument should be monitored on a periodic basis using the
same procedures. The monitoring procedure should detect
changes in the performance of the instrument (relative to that
seen during collection of the calibration spectra) that would
affect the estimation made with the calibration model.

7.5 For most infrared quantitative applications involving
complex matrices, it is a general consensus that scanning-type
instruments (either dispersive or interferometer based) provide
the greatest performance, due to the stability and reproducibil-
ity of modern instrumentation and to the greater amount of
spectral data provided for computer interpretation. These data
allow for greater calibration flexibility and additional options
for selections of spectral areas less sensitive to band shifts and

extraneous noise within the spectral signal. Scanning/
interferometer-based systems also allow greater wavelength/
frequency precision between instruments due to internal
wavelength/frequency standardization techniques, and the pos-
sibilities of computer-generated spectral corrections. For ex-
ample, scanning instruments have received approval for com-
plex matrices, such as animal feed and forages(1, 2).9

7.6 Descriptions of instrumentation designs related to Refs
(1) and(2) are found in Refs(3) and(4). Other instrumentation
similar in performance to that described in these references is
acceptable for all near-infrared techniques described in these
practices.

7.7 For information describing the measurement of perfor-
mance of ultraviolet, visible, and near infrared spectrophotom-
eters, refer to Practice E 275. For information describing the
measurement of performance of dispersive infrared spectro-
photometers, refer to Practice E 932. For information describ-
ing the measurement performance of Fourier Transform mid-
infrared spectrophotometers, refer to Practice E 1421. For
information describing the measurement performance of Fou-
rier Transform near-infrared spectrophotometers, refer to Prac-
tice E 1944. For spectrophotometers to which these practice do
not apply, refer to Guide E 1866.

8. Infrared Spectral Measurements

8.1 Multivariate calibrations are based on Beer’s Law,
namely, the absorbance of a homogeneous sample containing
an absorbing substance is linearly proportional to the concen-
tration of the absorbing species. The absorbance of a sample is
defined as the logarithm to the base ten of the reciprocal of the
transmittance, (T).

A 5 log10~1/T!

The transmittance,T, is defined as the ratio of radiant power
transmitted by the sample to the radiant power incident on the
sample.

8.1.1 For measurements conducted by reflectance, the re-
flectance,R, is sometimes substituted for the transmittanceT.
The reflectance is defined as the ratio of the radiant power
reflected by the sample to the radiant power incident on the
sample.

NOTE 2—The relationshipA = log10(1/R) is not a definition, but rather
an approximation designed to linearize the relationship between the
measured reflectance,R, and the concentration of the absorbing species.
For some applications, other linearization functions (for example,
Kubelka-Munk) may be more appropriate(5).

8.1.2 For most types of instrumentation, the radiant power
incident on the sample cannot be measured directly. Instead, a
reference (background) measurement of the radiant power is
made without the sample being present in the light beam.

NOTE 3—To avoid confusion, the reference measurement of the radiant
power will be referred to as a background measurement, and the word
reference will only be used to refer to measurements made by the
reference method against which the infrared is to be calibrated. (See
Section 9.)

9 The boldface numbers in parentheses refer to a list of references at the end of
the text.

E 1655

4



8.1.3 A measurement is then conducted with the sample
present, and the ratio,T, is calculated. The background
measurement may be conducted in a variety of ways depending
on the application and the instrumentation. The sample and its
holder may be physically removed from the light beam and a
background measurement made on the “empty beam”. The
sample holder (cell) may be emptied, and a background
measurement may be taken through the “empty cell”.

NOTE 4—For optically thin cells, care may be necessary to avoid optical
interferences resulting from multiple internal reflections within the cell.
For very thick cells, differences in the refractive index between the sample
and the empty cell may change properties of the optical system, for
example, shift focal points.

8.1.4 The sample holder (cell) may be filled with a liquid
that has minimal absorption in the spectral range of interest,
and the background measurement may be taken through the
“background liquid.” Alternatively, the light beam may be split
or alternately passed through the sample and through an
“empty beam,” an “empty cell,” or a “background liquid.” For
reflectance measurements, the reflectance of a material having
minimal absorbance in the region of interest is generally used
as the background measurement.

8.1.5 The particular background referencing scheme that is
used may vary among instruments, and among applications.
The same background referencing scheme must be employed
for the measurement of all spectra of calibration samples,
validation samples, and unknown samples to be analyzed.

8.2 Traditionally, a sample is manually brought to the
instrument and placed in a suitable optical container (a cell or
cuvette with windows that transmit in the region of interest).
Alternatively, transfer pipes can continuously flow liquid
through an optical cell in the instrument for continuous
analysis. With optical fibers, the sample can be analyzed
remotely from the instrument. Light is sent to the sample
through an optical fiber or fibers and returned to the instrument
by means of another fiber or group of fibers. Instruments have
been developed that use single fibers to transmit and receive
the light, as well as those using bundles of fibers for this
purpose. Detectors and light sources external to the instrument
can also be used, in which case only one fiber or bundle is
needed. For spectral regions where transmitting fibers do not
exist, the same function can be performed over limited dis-
tances using appropriate optical transfer optics.

NOTE 5—If the instrument uses predispersion of the light, some caution
must be exercised to avoid introducing ambient light into the system at the
sample position, since such light may be detected, giving rise to erroneous
absorbance measurements.

8.3 Although most multivariate calibrations for liquids in-
volve the direct measurement of transmitted light, alternative
sampling technologies (for example, attenuated total reflec-
tance) can also be employed. Transmittance measurements can
be employed for some types of solids (for example, polymer
films), whereas other solids (for example, powdered solids) are
more commonly measured by diffuse reflectance techniques.

8.4 For most infrared instrumentation, a variety of adjust-
able parameters are available to control the collection and
computation of the spectral data. These parameters control, for
instance, the optical and digital resolution, and the rate of data

acquisition (scan speed). A detailed description of the spectral
acquisition parameters and their effect on multivariate calibra-
tions is beyond the scope of these practices. However, it is
essential that all adjustable parameters that control the collec-
tion and computation of spectral data be maintained constant
for the collection of spectra of calibration samples, validation
samples, and unknown samples for which estimates are to be
made.

8.5 For definitions and further description of general infra-
red quantitative measurement techniques, refer to Practice
E 168. For a description of general techniques of infrared
microanalysis, refer to Practice E 334.

9. Reference Method and Reference Values

9.1 Infrared spectroscopy requires calibration to determine
the proportionality relationship between the signals measured
and the component concentrations or properties that are to be
estimated. During the calibration, spectra are measured for
samples for which these reference values are known, and the
relationship between the sample absorbances and the reference
values is determined. The proportionality relationship is then
applied to the spectra of unknown samples to estimate the
concentration or property values for the sample.

9.2 For simple mixtures containing only a few chemical
components, it is generally possible to prepare mixtures that
can serve as standards for the multivariate calibration of an
infrared analysis. Because of potential interferences among the
absorbances of the components, it is not sufficient to vary the
concentration of only some of the mixture components, even
when analyses for only one component are being developed.
Instead, all components should be varied over a range repre-
sentative of that expected for future unknown samples that are
to be analyzed. Since infrared measurements are conducted on
a fixed volume of sample (for example, a fixed cell pathlength),
it is preferable that concentration reference values be expressed
in volumetric terms, for example, in volume percentage, grams
per millilitre, moles per cubic centimetre, and so forth. Devel-
oping multivariate calibrations for reference concentrations
expressed in other terms (for example, weight percentage) can
lead to models that are linear approximations to what is really
a nonlinear relationship and can lead to less accurate estimates
of the concentrations.

9.3 For complex mixtures, such as those obtained from
petrochemical processes, preparation of reference standards is
generally impractical, and the multivariate calibration of an
infrared analysis must typically be performed on actual process
samples. In this case, the reference values used to calibrate the
infrared analysis are obtained by a reference analytical method.
The accuracy of a component concentration or property value
estimated by a multivariate infrared analysis is highly depen-
dent on the accuracy and precision of the reference values used
in the calibration. The expected agreement between the infra-
red estimated values and those obtained from a single reference
measurement can never exceed the repeatability of the refer-
ence method, since, even if the infrared estimated the true
value, the measurement of agreement is limited by the preci-
sion of the reference values. Knowledge of the precision
(repeatability) of the reference method is critical in the
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development of an infrared multivariate calibration. The pre-
cision of the reference data used in developing a model, and the
accuracy of the model can be improved by averaging repeated
reference measurements.

NOTE 6—If the reference values used to calibrate a multivariate infrared
analysis are generated in a single laboratory, it is essential that the
measurement process used to generate these values be monitored for bias
and precision using suitable quality assurance procedures (see for ex-
ample, Practice D 6299. If primary standards are not available to allow the
bias of the reference measurement process to be established, it is
recommended that the laboratory participate in an interlaboratory cross-
check program as a means of demonstrating accuracy.

NOTE 7—Samples like hydrocarbons from petrochemical process
streams can degrade with time unless careful sampling and sample storage
procedures are followed. It is critical that the composition of samples
taken for laboratory or at-line infrared analysis, or for laboratory mea-
surement of the reference data be representative of the process at the time
the samples are taken, and that composition is maintained during storage
and transport of the samples either to the analyzer or to the laboratory.
Sampling should be done in accordance with methods like Practices
D 1265 and D 4057, or Practice D 4177, whichever are applicable.
Whenever possible, sample storage for extended time periods is not
recommended because of the likelihood of samples degrading with time in
spite of sampling precautions taken. Degradation of samples can cause
changes in the spectra measured by the analyzer and thus in the values
estimated, and in the property or quality measured by the reference
method.

9.4 If the reference method used to obtain reference values
for the multivariate calibration is an established ASTM
method, then repeatability and reproducibility data are in-
cluded in the method. In this case, it is only necessary to
demonstrate that the reference measurement is being practiced
in accordance with the procedure described in the method, and
that the repeatability obtained is statistically comparable to that
published in the method. Data from established quality control
procedures can be used to demonstrate that the repeatability of
the reference method is within ASTM specifications. If such
data is not available, then repeatability data should be collected
on at least three of the samples that are to be used in the
calibration. These samples should be chosen to span the range
of values over which the calibration is to be developed, one
sample having a reference value in the bottom third of the
range, one sample having a value in the middle third of the
range, and one sample having a value in the upper third of the
range. At least six reference measurements should be made on
each sample. The standard deviation among the measurements
should be calculated and compared to that expected based on
the published repeatability.10

9.5 If the reference method to be used for the multivariate
calibration is an established ASTM method, and the samples to
be used in the calibration have been analyzed by a cooperative
testing program (for example, octane values obtained from
recognized exchange groups), then the reference values ob-
tained by the cooperative testing program can be used directly,
and the standard deviations established by the cooperative
testing program can be used as the estimate of the precision of
the reference data.

9.6 Reference methods that are not ASTM methods can be
used for the multivariate calibration of infrared analyses, but in
this case, it is the responsibility of the method developer to
establish the precision of the reference method using proce-
dures similar to those detailed in Practice E 691, in theManual
for Determining Precision for ASTM Methods on Petroleum
Products and Lubricants10 and in Practice D 6300.

9.7 When multiple reference measurements are made on an
individual calibration or validation sample, a Dixon’s Test (see
A1.1) should be applied to the values to determine if all of the
reference values came from the same population, or if one or
more of the values is suspect and should be rejected.

10. Simple Procedure to Develop a Feasibility
Calibration

10.1 For new applications, it is generally not known
whether an adequate IR multivariate model can be developed.
In this case, feasibility studies can be performed to determine
if there is a relationship between the IR spectra and the
component/property of interest, and whether a model of
adequate precision could possibly be built. If the feasibility
calibration is successful, then it can be expanded and validated.
A feasibility calibration involves the following steps:

10.1.1 Approximately 30 to 50 samples are collected cov-
ering the entire range for the constituent/property of interest.
Care should be exercised to avoid intercorrelations among
major constituents unless such intercorrelations always exist in
the materials being analyzed. The range in the concentration/
property should be preferably five times, but not less than three
times, the standard deviation of the reproducibility
(reproducibility/2.77) of the reference analysis.

10.1.2 When collecting spectral data on these samples,
variations in particle size, sample presentation, and process
conditions which are expected during analysis must be repro-
duced. Multiple spectra of the same sample under different
conditions can be employed if such variations in conditions are
anticipated during analysis.

10.1.3 Reference analyses on these samples are conducted
using the accepted reference method. If the range for the
component/property is not at least five times the standard
deviation of the reproducibility for the reference analysis, then
r replicate analyses should be conducted on each sample such
that the=r times the range is preferably five times, but at least
three times, the standard deviation of the reference analysis.

10.1.4 A calibration model is developed using one or more
of the mathematical techniques described in Sections 11 and
12. The calibration model is preferably tested using cross-
validation methods such as SECV or PRESS (see 15.3.6).
Other statistics can also be used to judge the overall quality of
the calibration.

10.1.5 If the SECV value obtained from the cross validation
suggests that a model of adequate precision can be built, then
additional samples are collected to round out the calibration
set, and to serve as a validation set, spectra of these samples are
collected, a final model is developed, and validated as de-
scribed in Sections 13, 14, and 15.

11. Data Preprocessing

11.1 Various types of data preprocessing algorithms can be

10 Manual on Determining Precision Data for ASTM Methods on Petroleum
Products and Lubricants, Available from ASTM Headquarters. Request Research
Report RR: D02-1007.
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applied to the spectral data prior to the development of a
multivariate calibration model. For example, numerical deriva-
tives of the spectra may be calculated using digital filtering
algorithms to remove varying baselines. Such filtering gener-
ally causes a significant decrease in the spectral signal-to-
noise. Digital filters may also be employed to smooth data,
improving signal to noise at the expense of resolution. A
complete description of all possible preprocessing methods is
beyond the scope of these practices. For the purpose of these
practices, preprocessing of the spectral data can be used if it
produces a model which has acceptable precision and which
passes the validation test described in Section 21. In addition,
any spectral preprocessing method must be automated so as to
provide an exactly reproducible result, and must be applied
consistently to all calibration spectra, validation spectra, and to
spectra of unknowns which are to be analyzed.

11.2 One type of preprocessing requires special mention.
Mean-centering refers to a procedure in which the average of
the calibration spectra (average absorption over the calibration
spectra as a function of wavelength or frequency) is calculated
and subtracted from the spectra of the individual calibration
samples prior to the development of the model. The average
reference value among the calibration samples is also calcu-
lated, and subtracted from the individual reference values for
the calibration samples. The model is then built on the
mean-centered data. If the spectral and reference value data are
mean-centered prior to the development of the model, then:

11.2.1 When an unknown sample is analyzed, the average
spectrum for the calibration site must be subtracted from the
spectrum of the unknown prior to applying the mean-centered
model, and the average reference value for the calibration set
must be added to the estimate from the mean-centered model to
obtain the final estimate; and

11.2.2 The degrees of freedom used in calculating the
standard error of calibration must be diminished by one to
account for the degree of freedom used in calculating the
average (see 15.2).

12. Multivariate Calibration Mathematics

12.1 Multivariate mathematical techniques are used to relate
the absorbances measured for a set ofcalibration samplesto
the reference values (property or component concentration
values) obtained for this set of samples from a reference test.
The object is to establish a multivariatecalibration modelthat
can be applied to the spectra of future, unknown, samples to
estimate values (property or component concentration values).
Only linear multivariate techniques are described in these
practices; that is, it is assumed that the property or component
concentration values can be modeled as a linear function of the
sample absorptions. Various nonlinear multivariate techniques
have been developed, but have generally not been as widely
used as the following linear techniques. These practices are not
intended to compare or contrast among these techniques. For
the purpose of these practices, the suitability of any specific
mathematical technique should be judged only on the follow-
ing two criteria:

12.1.1 The technique should be capable of producing a
calibration model that can be validated as described in Section
18; and

12.1.2 The technique should be capable of providing statis-
tics suitable for identifying if samples being analyzed are
outside the range for which the model was developed; that is,
when the estimated values represent extrapolation of the model
(see 16.3).

NOTE 8—In the following derivations, matrices are indicated using
boldface capital letters, vectors are indicated using boldface lowercase
letters, and scalars are indicated using lowercase letters. Vectors are
column vectors, and their transposes are row vectors. Italicized lowercase
letters indicate matrix or vector dimensions.

12.1.3 All linear, multivariate techniques are designed to
solve the same generic problem. Ifn calibration spectra are
measured atf discrete wavelengths (or frequencies), thenX, the
spectral data matrix, is defined as anf by n matrix containing
the spectra (or some function of the spectra produced by
preprocessing, as described in Section 9) as columns. Similarly
y is a vector of dimensionn by 1 containing the reference
values for the calibration samples. The object of the linear,
multivariate modeling is to calculate a prediction vectorp of
dimensionf by 1 that solves Eq 1:

y 5 Xtp 1 e (1)

where Xt is the transpose of the matrixX obtained by
interchanging the rows and columns ofX. The error vector,e,
is a vector of dimensionn by 1, that is the difference between
the reference valuesy and their estimates,ŷ,
where:

ŷ 5 Xtp (2)

12.1.4 The estimation of the prediction vectorp is generally
calculated so as to minimize the sum of squares of the errors,

ete5 ?? e2 ?? 5 ~y – Xtp!t~y – Xtp! (3)

SinceX is generally not a square matrix, it cannot be directly
inverted to solve Eq 3. Instead, the pseudo or generalized
inverse ofX, X+, is calculated as:

X1y 5 ~XXt!21Xy 5 p (4)

wherep is the least square estimate of the prediction vectorp.
It should be noted that, in applying Eq 1-4, it is assumed that
the errors in the spectral data inX are negligible compared to
the errors in the reference data, and that there is a linear
relationship between the component concentration or property
and the spectral data. If either of these assumptions is incorrect,
then the linear models derived here will not yield an optimal
estimate ofp.

12.1.5 In calculating the least square solution in Eq 4, it is
assumed that the individual error values ine (see Eq 1) are
normally distributed with common variance. This will be true
if each of the individual reference values iny represents the
result of a single reference measurement, and if the repeatabil-
ity of the reference method is constant over the range of values
in y. If the values iny represent averages of more than one
reference method determination, then the least square expres-
sion in Eq 4 is not applicable. Ifri reference valuesyi1, yi2, yi3,
. . . yir are measured for calibration samplei, then a weighted
regression can be employed. IfR is a diagonal matrix of
dimension n by n containing therivalues for each of the
calibration samples, then the weighted regression is given by:
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=R ȳ 5 =RXtp 1 e (5)

~XRXt!21XRȳ 5 p (6)

where=R indicates the diagonal matrix containing the square
roots of therivalues, andȳ is the vector containing the averages
of the ri reference values for each sample. If averages of
multiple reference values are used iny and a weighted
regression is used, special care must be taken to add back the
variance removed by calculating the average reference values
(see Section 11) so that the statistics for the model can be
compared to those for a single reference value determination.
The specific method in which the weighting is applied depends
on the specific multivariate mathematics that are employed.

12.1.6 For most cases, if the calibration spectra are collected
over an extended wavelength (or frequency) range, the number
of individual absorption values per spectrum,f, will exceed the
number of calibration spectra,n. In this case, the matrices
(XXt) and (XRXt) are rank deficient and cannot be directly
inverted. Even in cases wheref < n, colinearity among the
calibration spectra can cause(XXt) and (XRXt) to be nearly
singular (to have a determinant that is near zero), and the direct
use of Eq 4 and Eq 6 can produce an unstable model, that is,
a model for which changes on the order of the spectral noise
level produce significant changes in the estimated values. In
order to solve Eq 4 and Eq 6, it is therefore necessary to reduce
the dimensionality ofX so that a stable inverse can be
calculated. The various linear, mathematical techniques used
for multivariate calibration are different means of reducing the
dimensionality ofX so as to be able to calculate stable inverses
of (XXt) and (XRXt) and the estimatep.

12.2 Multilinear Regression Analysis:
12.2.1 In multilinear regression (MLR), a specific number

of wavelengths (or frequencies),k, are chosen such thatk << n.
A new matrixM of dimensionk by n is obtained fromX by
extracting the columns fromX that correspond to the selected
wavelengths (or frequencies). The calibration equation then
becomes:

y 5 Mtb 1 e (7)

whereb is a vector of dimensionk by 1 containing the set of
regression coefficients defined at each of the chosen wave-
lengths (or frequencies). The solution for the regression coef-
ficients is obtained as:

~MM t!21My 5 b (8)

The estimate of the full prediction vector,p, is obtained from
b by substituting the values frombinto the corresponding
positions inp(corresponding to the selected wavelengths or
frequencies), and setting all other elements ofp (corresponding
to the wavelengths or frequencies that were eliminated in going
from X to M ) to zero.

12.2.2 If a weighted regression is used, the corresponding
form for Eq 8 becomes:

~MRM t!21MRy 5 b (9)

12.2.3 Not all commercial software packages that imple-
ment MLR include options for weighted regressions. If MLR
models are developed with such packages, averages of multiple

reference values should still be included in they vector if they
are available. The use of the average values will lead to better
estimates of the regression coefficients, but the model produced
will not be the least squares minimum. Standard errors of
calibration calculated by the software will generally not be
meaningful in these cases since they are not expressed relative
to a single reference measurement. Standard errors of calibra-
tion should be recalculated using the procedure described in
Section 11.

12.2.4 The choice of the number of wavelengths (or fre-
quencies),k, to use in multilinear regression is a critical factor
in the model development. If too few wavelengths are used, a
less precise model will be developed. If too many wavelengths
are used, colinearity among the absorption values at these
wavelengths may lead to an unstable model. The optimum
number of wavelengths (or frequencies) for a model is related
to the number of spectrally distinguishable components in the
calibration spectra (see Section 15) and can generally only be
determined by trial and error. As a rule, the number of
wavelengths (or frequencies) used must be large enough to
produce a model with the desired precision, but small enough
to produce a stable model that passes validation.

12.2.5 The choice of specific wavelengths (or frequencies)
to include in a multilinear regression model is also a critical
factor in the model development. Several mathematical algo-
rithms have been suggested for making this selection(6, 7, 8,
9). Alternatively, selection may be based on prior knowledge of
a relationship between the absorptions measured and the
property or component being modeled. It is beyond the scope
of these practices to compare alternative selection methods. An
adequate set of wavelengths (or frequencies) will, for the
purpose of these practices, be defined as a set that produces a
model with the desired precision that passes the validation test
procedure described in Section 18.

12.3 Principal Components Regression (PCR):
12.3.1 Principal components regression (PCR) is based on

the singular value decomposition of the spectral data matrix.
The singular value decomposition takes the form:

X 5 L(St (10)

12.3.1.1 The scores matrix,S, is a n by n matrix that
satisfies the relationship:

StS5 I (11)

St~XtX!S5 L (12)

where I is a n by n identity matrix, andL is the matrix of
eigenvalues ofXtX. The n by n matrix ( is the matrix of
singular values, that are the square roots of the eigenvalues,
that is:

(2 5 L (13)

12.3.1.2 The loadings matrix,L , is a f by n matrix that
satisfies the relationships:

LtL 5 I (14)

Lt ~XXt!L 5 L (15)

12.3.1.3 The row vectors that make up the matricesS andL
are orthonormal, that is, the dot product of the vector with itself
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is 1, and the dot product with any other vector in the matrix is
0.

NOTE 9—In some implementations of PCR, the data matrixX may be
decomposed as the product of only two matrices,S andL . EitherS or L
is then orthogonal but not orthonormal, and eitherStS = L or LtL = L.

12.3.1.4 Using the singular value decomposition, the
pseudo inverse of the matrixX can be calculated as:

X1 5 S(21L t (16)

12.3.1.5 Using the pseudo inverse relationship in Eq 16, it is
then possible to solve for the prediction vectorp. In practice,
however, the full inverse ofX as given in Eq 16 is not used,
since it contains information relating to the spectral noise in the
calibration spectra.

12.3.2 When a principal components analysis is conducted
on a matrixX containing the calibration spectra, the signals
arising from the absorbances of the calibration sample compo-
nents generally account for the majority of the variance inX,
and are concentrated into the firstk loading vectors, that
correspond to the larger eigenvalues. While the separation of
signal and noise is seldom perfect, it is preferable to use only
the first k vectors in building a model. The singular value
decomposition ofX is then written as:

X 5 La(aSa
t 1 Ln(nSn

t (17)

whereSa is an by k matrix containing the firstk columns ofS,
La is a f by k matrix containing the firstk columns ofL, Sa is
a k by k diagonal matrix containing the firstk singular values,
andSn, Sn, andLn are the corresponding matrices containing
the lastn-k elements ofS, L, andS. The pseudo inverse ofX
is then approximated as:

X1 5 Sa(a
21La

t (18)

12.3.2.1 The estimate for the prediction vector,p, is then
given as:

p 5 La(a
21Sa

t y (19)

12.3.2.2 Alternatively, the scores,S, may be regressed
against the reference values,y, to obtain a set of regression
coefficients,b:

y 5 Sab 1 e (20)

b 5 ~Sa
t Sa!

21Sa
t y 5 Sa

t y (21)

12.3.2.3 Various stepwise regression algorithms(10, 11, 12)
may be used to test which of the principal components (which
columns in the scores matrix,S) show a statistically significant
correlation to the reference values iny. Coefficients (elements
of b) for principal components that do not show a statistically
significant correlation may be set to zero. The estimate for the
prediction vector then becomes:

p 5 LaSa
21 b (22)

12.3.3 If the average of multiple reference measurements is
used in they vector, then a weighted regression should be used
in calculating the prediction vector. The weighting is prefer-
ably applied to the scores in Eq 20 and Eq 21, and the spectra
in X are not weighted prior to the singular value decomposi-
tion.

12.3.3.1 If ri individual reference values are measured for

the ith calibration sample, then enteringri copies of the
spectrumxi into theX matrix, or weighting the spectrumxi by
=ri will alter the loadings that are calculated. If the spectrum
xi is only measured once, the uncertainty in the spectral
variables contributed byxi is no different from that for the other
n − 1 spectra. Weighting the spectrumxi prior to the singular
value decomposition will tend to force noise characteristics of
xi into the loadings, adversely affecting the model. Weighting
the scores during the calculation of the regression coefficients
will properly account for the differences in the variance among
the components of theȳ vector. The weighted regression
equations become:

=R ȳ 5 =RSab 1 e (23)

b 5 ~Sa
t RSa!

21RSa
t ȳ (24)

12.3.4 Not all commercial software packages that imple-
ment PCR include options for weighted regressions. If PCR
models are developed with such packages, averages of multiple
reference values should still be included in they vector if they
are available. The use of the average values will lead to better
estimates of the regression coefficients, but the model produced
will not be the least squares minimum. Standard errors of
calibration calculated by the software will generally not be
meaningful in these cases since they are not expressed relative
to a single reference measurement. Standard errors of calibra-
tion should be recalculated using the procedure described in
15.1.

12.3.5 As with wavelengths in multilinear regression, the
choice of the number of principal components,k, to use in the
regression is a critical factor in the model development. If too
few principal components are used, a less precise model will be
developed. If too many principal components are used, noise
characteristics of the calibration samples will be incorporated
into the model leading to unstable estimations. The optimum
number of principal components for a model is related to the
number of spectrally distinguishable components in the cali-
bration spectra (see Section 15), and can generally only be
determined by trial and error. As a rule, the number of principal
components used must be large enough to produce a model
with the desired precision, but small enough to produce a stable
model that passes validation.

12.4 Partial Least Squares (PLS):

NOTE 10—The term PLS has been used to describe various mathemati-
cal algorithms. The version described here is a specific representation of
the PLS-1 algorithm, and deals with only one set of reference values at a
time. PLS-2 or multiblock PLS algorithms exist that can be used for the
simultaneous calibration of multiple components or concentrations, or
both, but these algorithms are less well established than PLS-1 and are not
included in these practices. Various descriptions of the PLS-1 algorithm
have been published(13, 14, 15, 16, 17, 18, 19, 20)many of which differ
slightly in the actual computational steps. In implementing the PLS-1
algorithm, a choice must be made as to which, if either, of the scores or
loadings vectors are to be normalized. In the following derivation, the
scores vectors were normalized. If neither vector is normalized, or if the
loadings vector is normalized instead of the scores vector, a different
expression will be obtained for the prediction vector. Differences in the
derivations should not result in differences in the numerical values
obtained for the prediction vector, nor in estimates based on it.

12.4.1 Like PCR, PLS involves the decomposition of the
spectral data matrix,X, into the product of matrices. Unlike
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PCR whereX is first decomposed, and then regressed versus
the reference values, in PLS, they vector is used in obtaining
the decomposition ofX. The PLS proceeds by means of a
series of steps, which are repeated in a loop. Each time the
steps are repeated, a weighting vectorwi (of dimensionf by 1),
a scores vectorsi (of dimensionn by 1), a regression coefficient
bi (a scalar), and a loadings vectorli (of dimensionf by 1) are
calculated. The subscripti indicates the number of times the
entire loop has been executed, and is initially 1.

12.4.1.1Step 1—Calculation of a weighting vector of di-
mensionf by 1, wi:

Xt 5 ywi
t 1 Z (25)

ŵi 5 Xy (26)

12.4.1.2Step 2—Scaling the weight vectorŵi and calcula-
tion of a normalized scores vector,si, of dimensionn by 1:

Xt 5 si ŵi
t 1 Z (27)

ŝ5 Xt ŵi (28)

ŵi 5 ŵi/~ ŝt ŝ! (29)

ŝi 5 ŝ/~ ŝt ŝ! (30)

12.4.1.3Step 3—Regressing the scores vector against the
reference values to obtain a regression coefficient,bi:

y 5 ŝibi 1 e (31)

bi 5 ŝi
ty (32)

12.4.1.4Step 4—Calculation of a loading vector,l i of
dimensionf by 1:

X 5 l i ŝi
t 1 Z (33)

l i 5 Xŝi (34)

12.4.1.5Step 5—Calculation of the residuals:

Zi 5 X 2 l iŝi
t (35)

ei 5 y 2 biŝi (36)

12.4.1.6 For subsequent times through the loop, the matrix
X is replaced with the residuals matrixZ i–1 from the previous
loop, and they vector is replaced with the residuals vectorei–1.
The loop is repeatedk times to obtaink weighting, scores, and
loading vectors, andk regression coefficients. The overall
expression for the results is then:

X 5 LSt 1 Z (37)

y 5 Sb1 e (38)

whereS is then by k matrix containing theŝi as rows,L is the
f by k matrix containing thel i as individual rows,Z is the
residual from the spectral data matrix, ande is the residual
from the estimation of the reference values. The estimate of the
prediction vector is then given by:

p 5 L ~LtL !21b (39)

12.4.2 If the values in the vectorȳ contain the average of
multiple reference measurements, then a weighted regression
should be employed in developing the model. Unfortunately,
for PLS, development of an appropriate weighting scheme is
complicated by the use ofy in the decomposition ofX. If the
spectrum xi corresponds to a sample for which xi reference

values are measured, then weighting bothX andy by =R in
Step 1 of the PLS algorithm will over emphasize the spectral
variables contributed by xi. Preferably, weighting is done only
in the calculation of the regression coefficients in Step 3. Eq
31and Eq 32 then become:

=R ȳ 5 =Rŝibi 1 e (40)

bi 5 ~ŝi
tRŝi!

21ŝi
tR ȳ (41)

12.4.2.1 The other steps in the algorithm proceed un-
changed.

12.4.3 Not all commercial software packages that imple-
ment PLS include options for weighted regressions. If PLS
models are developed with such packages, averages of multiple
reference values should still be included in theȳ vector if they
are available. The use of the average values will lead to better
estimates of the regression coefficients, but the model produced
will not be the least squares minimum. Standard errors of
calibration calculated by the software will generally not be
meaningful in these cases since they are not expressed relative
to a single reference measurement. Standard errors of calibra-
tion should be recalculated using the procedure described in
15.2.

13. Estimation of Values from Spectra

13.1 If x (an f by 1 vector) is the spectrum of a sample, then
ŷ (a scalar), the estimated component concentration or property
value, is given by:

ŷ 5 xt p (42)

wherep is the prediction vector obtained from the multivariate
calibration. The expression in Eq 42 involves only the dot
product of two vectors to obtain the estimated value; it has the
advantage of being computationally simple. However, alterna-
tive computations are often employed in obtaining yˆ, since they
provide additional parameters required to calculate the uncer-
tainty in the estimation as well as whether or not the estimation
is being made by interpolation or extrapolation of the calibra-
tion model.

13.2 Estimations by MLR—For MLR, the absorbance val-
ues inx that correspond to the wavelengths (or frequencies)
chosen in the calibration are extracted to form a vectorm (of
dimensionk by 1). The estimate yˆ is then obtained as the dot
product of the vectorm with the vector of regression coeffi-
cients,b:

ŷ 5 mt b (43)

13.3 Estimations by PCR:
13.3.1 For PCR, the vectorx is first decomposed:

xt 5 st(Lt (44)

ŝt 5 xtL(21 (45)

13.3.2 The estimated scores,ŝ (a k by 1 vector), are then
multiplied by the regression coefficients obtained from the
calibration to obtain yˆ:

ŷ 5 ŝt b (46)

13.4 Estimations by PLS:
13.4.1 For PLS, the vectorx is first decomposed in steps. Eq

47 and Eq 48 are repeated for each latent variablei in the PLS
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model. After the first cycle through Eq 47and Eq 48,xt andx
are replaced withzi-1

t andz-i-1 from the previous cycle.

ŝi
t 5 xtwi (47)

zi 5 x 2 l i ŝi
t (48)

13.4.2 The estimated scores,ŝ (a k by 1 vector), are then
multiplied by the regression coefficients obtained from the
calibration to obtain yˆ

ŷ 5 ŝt b (49)

14. Post Processing

14.1 Several multivariate methods involve some post pro-
cessing of the estimates from the multivariate model. The most
common example is for mean-centered models (see Section
11), where the average reference value for the calibration set
must be added to the initial estimate from the model to obtain
the final estimate. A model can be developed to estimate
changes in the pathlength of the cell used to contain the sample
for analysis, and the estimated concentrations or property
values can be scaled based on the results of the pathlength
estimate.

14.2 A complete description of possible post-processing
algorithms is beyond the scope of these practices. Post-
processing can be employed if it provides a model with
adequate precision, passes the validation test described in
Section 18, and provided that the post-processing algorithm is
automated, so as to provide exactly reproducible results, and is
applied uniformly to the results from calibration, validation,
and analyses.

15. Statistics Used in Evaluating and Optimizing
Calibration Models

15.1 Various statistics are used to evaluate and optimize the
performance of multivariate calibration models. These statis-
tics are generally applied only to data in the calibration set;
they should not be confused with the statistics that are used to
validate the model (Section 18), that are calculated based on a
separately analyzed validation set.

15.2 Standard Error of Calibration:
15.2.1 If ŷ are the values estimated for the calibration

samples, andy are the corresponding reference values, thene
is the calibration error vector defined by:

e5 ŷ 2 y (50)

The prediction errors include contributions from errors in the
reference values for the calibration set, spectral errors in the
spectra of the calibration set, and model errors (using wrong
number of variables, nonlinear relationships, and so forth).

15.2.2 The standard error of calibration (SEC), is defined as:

SEC5Œete
d (51)

d is the number of degrees of freedom in the calibration model.d is
typically equal ton − k, wheren is the number of calibration samples, and
k is the number of variables (wavelengths in MLR, principal components,
or PLS latent variables) used in the model. If the spectral data and
reference values are mean centered prior to the development of the
calibration model (see Section 11), thend = n − k − l , since one degree of
freedom is removed in calculating the averages. The standard error of

calibration is sometimes referred to as the standard error of estimate
(SEE).

NOTE 11—If a constant term is included in a MLR regression, or in the
regression of PCR scores against concentrations or properties, then
d = n − k − l , since one degree of freedom is associated with the constant.
Care must be exercised in using a constant. In the case where neat samples
are analyzed and the samples are run in fixed pathlength cells, the volume
fractions of all components are constrained to sum to unity. Inclusion of
a constant under these conditions can result in near singular matrices, and
unstable models.

NOTE 12—For surrogate calibrations, there is no a priori relationship
between the SEC calculated based on the simple gravimetric mixtures and
the error level expected for application of the model for analysis of actual
samples. It is recommended that such standard errors be subscripted as
SECsurrogate.

15.2.3 The standard error of calibration is used in estimating
the expected agreement between values estimated using the
calibration models and values that would be measured by the
reference method (see Section 9). Some care must be applied in
interpreting SEC if the values used iny are not single
determinations by the reference method. If the values inȳ for
individual samples represent the average of multiple reference
measurements, then the SEC calculated from Eq 51 is not on a
per reference measurement basis. For example, if all values in
ȳ are the average of three reference measurements, then the
SEC calculated using Eq 51 can only be used to estimate the
expected agreement between the infrared estimate and the
average of three reference measurements.

15.2.3.1 If multiple reference values are used for some or all
of the calibration samples, it is possible to calculate an SEC
value that is on a per reference measurement basis. Ifxi is the
spectrum of theith calibration sample, andyi1, yi2. . . yir areri

independently measured reference values for that sample, then
the weighted regression Eq 9 for MLR, 23 and 24 for PCR, and
40 and 41 for PLS are preferably used in calculating the
prediction vectors. Whether or not a weighted regression is
employed, the variance removed by calculating the averages
must be calculated as:

s 2
avg 5 (

i 5 1

n

(
j 5 1

ri

~yij 2 ȳi!
2 (52)

where the first summation runs over all thei = 1 to n
calibration samples, the second summation runs over thej = 1
to ri reference values for theith sample, andȳi is the average of
the ri reference values for theith sample. In this case, the
standard error of calibration is calculated as:

SEC5ŒetRe 1 s 2
avg

dw
(53)

15.2.3.2 The degrees of freedom for the weighted regres-
sion, dw, are the total number of individual reference values
measured for all the samples, minus the number of variables in
the model:

dw 5 @ (
i 5 1

n

ri# 2 k (54)

15.2.3.3 If the spectral and reference data are mean centered
prior to the development of the calibration, then:

dw 5 @ (
i 5 1

n

ri# 2 k 2 1 (55)
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The SEC calculated in this fashion will be on a per reference
measurement basis.

15.2.3.4 An alternative expression for SEC in the case
where multiple reference values per sample are used is given
by:

SEC5Œ(
i 5 1

n

(
j 5 1

ri

~yij 2 ŷi!
2

dw
(56)

NOTE 13—In Eq 53, thee vector represents the difference between the
estimated value and the reference value, where the reference value may be
the average of more than one reference measurement. The matrix notation
implies the sum of the weighted squares of the differences, where the
square of the difference is weighted by the number of reference values that
were included in the average. Alternatively, the square of the difference
between the estimated value and each individual reference value can be
computed and summed as in Eq 56, in which case the variance term is zero
since the average reference values are not used in the calculation.

15.2.4 The standard error of calibration (SEC) is the stan-
dard deviation for the differences between reference and IR
estimated values for samples within the calibration set. It is an
indication of the total residual error due to the particular
regression equation to which it applies. The SEC will generally
decrease when the number of independent variables used in the
model increases, indicating that increasing the number of terms
will allow more variation in the data to be explained, or
“fitted”. The SEC statistic is a useful estimate of the theoretical
“best” accuracy obtainable for a specified set of variables used
to develop a calibration model.

15.3 Optimizing the Number of Variables in a Model:
15.3.1 Determining how many variables (wavelengths in

MLR, principal components, or PLS latent variables) to use in
a model is a critical step in the model development. Unfortu-
nately, there are no hard and fast rules upon which to make this
determination. In general, if too few variables are used, a less
precise model will result. If too many variables are used, the
estimates from the model may be unstable, that is, small
changes in the spectrum on the order of the spectral noise may
produce statistically significant changes in the estimates.

15.3.2 The maximum number of variables that should be
used in developing a multivariate calibration model,k, is
related to the number of detectable, spectrally distinguishable
components (or functionalities) that are present in the calibra-
tion set. Components (or functionalities) are spectrally distin-
guishable if they give rise to absorptions which are not linearly
correlated among the calibration samples, and if the change in
the absorptions among the calibration spectra is larger than the
spectral noise. If, within a calibration set, the concentrations of
components are linearly correlated, then the absorptions due to
these components will also be linearly correlated. Even if these
components have isolated absorption features, they will not be
spectrally distinguishable to the multivariate mathematics, and
will contribute at most one variable to the multivariate model.
If the concentrations of the components are nearly correlated,
such that the absorptions due to the components are colinear to
within the spectral noise, then the components are not spec-
trally distinguishable. If components are present at sufficiently
low levels so that the component absorption is below the
spectral noise, then the component is not spectrally detectable

and cannot contribute a variable to the multivariate model.
Clearly, for complex mixtures, the number of detectable,
spectrally distinguishable components (or functionalities) is
often less than the number of real chemical components.

15.3.3 Estimating the maximum number of detectable, spec-
trally distinguishable components among a set of calibration
spectra requires knowledge of the spectral noise level. The
spectral noise level can be estimated from replicate measure-
ments conducted on a single sample. For instance, if replicate
spectra are conducted on one sample, a PCR analysis of the
spectra can be conducted. Since the spectra all represent the
same material, only one principal component should be present
in the spectral data. The percentage of the variance due to the
first principal component (the first eigenvalue divided by the
sum of all the eigenvalues) can be calculated. This percentage
of the variance can be used to estimate a cutoff point for
determining how many principal components to include in a
model, namely, the sum of the firstk eigenvalues divided by the
sum of all the eigenvalues should be of the same order as the
cutoff. Similar calculations can be performed using PLS. For
MLR, tests for colinearity among the absorbances at candidate
wavelengths are generally conducted as part of the wavelength
selection procedure. For instance, if a model is built usingk
wavelengths for which the absorbances are linearly indepen-
dent, the linear dependence of all candidate wavelengths for
inclusion in a model based onk + 1 wavelengths can be
checked. If the absorbances at all candidate wavelengths can be
fit as a linear combination of thek wavelengths already
selected to within the spectral noise level, thenk is the
maximum number of linearly independent wavelengths upon
which a model can be based.

15.3.4 Models can be built using fewer thank variables,
provided that such models exhibit adequate precision and pass
validation.

15.3.5 Knowledge of the precision of the reference method
is also useful in determining how many variables to include in
a multivariate model. As discussed, the agreement between
infrared estimated values and reference values can never
exceed the repeatability of the reference method, since, even if
the infrared estimated the true value, the measure of the
agreement would be limited by the repeatability of the refer-
ence method. Comparison of the standard error of calibration
(calculated on the basis of a single reference measurement)
against the standard deviation calculated from the reference
method repeatability provides an indication of the maximum
number of variables to include in a model. Standard errors of
calibration that are lower than the standard deviation for the
reference method indicate overfitting of the data.

15.3.6 Cross validation procedures are also used to estimate
the optimum number of variables that should be included in a
model. In cross validation, one or more sample spectra are
removed from the data matrix, their corresponding reference
values are removed from the reference value vector, and a
model is built on the remaining samples. The model is then
used to estimate the value for the samples that were left out.
This process is repeated until each sample has been left out
once. The error from the cross validation,ecv, is then calculated
as
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ecv 5 ŷcv 2 y (57)

where ŷcv is the vector containing the cross validation esti-
mates. A PRESS value can then be calculated as:

PRESS5 ecv
t ecv 5 (

i 5 1

n

~ ŷcvi
2 yi!

2 (58)

15.3.6.1 A standard error of cross validation (SECV) is
calculated as:

SECV5ŒPRESS
n (59)

15.3.6.2 PRESS or SECV values can be calculated as a
function of the number of variables used in the model. The
procedure would normally start by using one variable as a
model while leaving a single sample out of the calibration set.
After a calibration is developed using the remaining samples,
the algorithm predicts the excluded sample and records the
difference between the reference and estimated values. This
procedure is iterated (repeated) for the entire sample set, and
the PRESS (or SECV) value for the one variable model is
reported. The procedure then adds another variable and repeats
the process. The PRESS procedure will stop when the predes-
ignated number of factors is reached (say 10 to 20 maximum).
The calibration model with the smallest PRESS (SECV) can be
selected as the optimum model for the calibration set used. If
more than one model have similar PRESS values, the one with
fewer variables will generally be chosen.

15.3.6.3 A plot of PRESS (SECV) values (y-axis) versus the
number of variables (x-axis) is often used to determine the
minimum PRESS corresponding with the optimum number of
variables in the calibration model. A minimum in the function
can be taken as an indication of the maximum number of
variables to be used. If no minimum occurs, the first point at
which the PRESS or SECV reaches a more or less constant
level can provide an indication of the maximum number of
variables to include. Comparisons of SECV against the stan-
dard deviation for the reference method repeatability are again
useful, SECVs significantly lower than the standard deviation
suggesting overfitting of the data.

15.3.6.4 An excellent description of the cross validation
procedure (algorithm) is found in page 325 of Ref(21).
Calculation of PRESS and SECV can be computationally
intensive and can result in the use of substantial computer time.

NOTE 14—The exact values of PRESS and SECV calculated will
depend on how many samples are left out during each cycle of the cross
validation. If more than one sample is left out during a cycle, then the
PRESS and SECV will depend on the combination of samples left out.
Cross validation routines that leave out multiple spectra during each cycle
require less computation time than routines that leave out one spectrum at
a time. However, the results of such routines are less comparable and
reproducible than those which leave out one spectrum at a time.

15.3.7 The above-mentioned methods for estimating the
number of variables to use in a model are intended only as
guidelines. None of the methods can be relied upon to always
produce a stable model. The ultimate test for the number of
variables is whether or not the model can be validated as
described below. The number of variables used in a model must
ultimately be chosen to produce a model with the desired
precision that can be validated.

15.4 Confidence Limits for an Estimated Value:
15.4.1 The confidence limits for a value estimated by a

multivariate model is given by:

t · SEC ·=1 1 h (60)

where t is the student’s t value for the number of degrees of
freedom in the model, andh is the leverage statistic defined in
16.2. If t values are chosen from Table A1.3 for the 95 %
probability level, then for a validated model, a single value
measured by the reference method is expected to fall within a
range from of yˆ − t · SEC ·=1 1 h to ŷ + t · SEC · f=1 1 h
for 95 % of samples analyzed, provided that the analysis is an
interpolation of the model. The confidence limits for an
estimated value in Eq 60 are sometimes referred to as the
confidence bands or confidence intervals for the estimate.

15.4.2 The use of Eq 60 to estimate the confidence limits is
only an approximation since it ignores any uncertainty inx, the
spectral data. The confidence limits in Eq 60 derive from the
assumption that the errors inx are negligible compared to the
errors in y, and that the spectrumx can be completely
described by the variables used in the model. If the errors in the
spectral data are not negligible, or if the spectrumx contains
absorptions due to components that were not present in the
calibration set, the confidence limits in Eq 60 underestimate the
potential error in the estimate. Eq 60 is expected to give a
reasonable approximation for the confidence limits on an
estimated value for samples that are interpolations of the model
(see 16.4).

15.5 Additional Statistics for Evaluating the Mathematical
Models:

15.5.1 A variety of statistical tests are in use for evaluating
calibration models. Some tests that are in common use include:

15.5.1.1 Coefficient of multiple determination,
15.5.1.2 Correlation coefficient,
15.5.1.3 F-test statistic (F for regression),
15.5.1.4 Partial F or t2 test for a regression coefficient,
15.5.1.5 Standard error of calibration (standard error of

estimate), and
15.5.1.6 Bias corrected standard error.
15.5.2 Although many of these tests have been more com-

monly applied to MLR models, some are equally applicable to
PCR and PLS models. Details on these tests and related
statistical terms are included in Annex A2. Further explana-
tions for these statistical tests can be found in Annex A2 and
several references(22, 23).

16. Outlier Statistics

16.1 During calibration, outlier statistics are applied to
identify samples that have unusually high leverage on the
multivariate regression. During analysis, outlier statistics are
employed to detect samples which represent an extrapolation
of the model.

16.2 Leverage Statistic—The leverage statistic,h, is a scalar
measure of where the spectral vectorx lies within the multi-
variate parameter space used in the model. The leverage
statistic is used in detecting outliers during the calibration, in
detecting extrapolation of the model during analyses, and in
estimating the uncertainty on an estimated value.
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NOTE 15—Commercial software packages use numerous variations on
the leverage statistic. The leverage statistic is sometimes referred to as the
hat matrix(24), or as the Mahalanobis Distance,D2 (although it is actually
the square of the distance). Various commercial software packages may
useD instead ofD2. Some software packages may scaleh (or D2) by n (or
n − 1 if mean-centered), to obtain a statistic that is independent of the
number of calibration samples. If this scaled statistic is further multiplied
by (n−k−1)/nk, a statistic that has anF distribution is obtained(25). The
leverage statistic,h, is preferred here since it is easily related to the
number of samples and variables. Model developers should attempt to
verify exactly what is being calculated. Both mean-centered and not mean
centered definitions forh exist, with the mean-centered approach pre-
ferred. Regardless of whether mean centering of data is performed, the
statistic designatedh has valid utility for outlier detection.

16.2.1 If x is a spectral vector (dimensionf by 1) andX is
the matrix of calibration spectra (of dimensionn by f), then the
leverage statistic is defined as:

h 5 xt ~XXt!1x (61)

16.2.2 For a mean-centered calibration,x andX in Eq 61 are
replaced byx − x̄ andX − X̄ respectively.

16.2.3 If a weighted regression is used, the expression for
the leverage statistic becomes:

h 5 xt ~XRXt!1x (62)

16.2.4 In MLR, ifm is the vector (dimensionk by 1) of the
selected absorbance values obtained from a spectral vectorx,
and M is the matrix of selected absorbance values for the
calibration samples, then the leverage statistic is defined as:

h 5 mt ~MM t!21m (63)

16.2.5 Similarly, if a weighted regression is used, the
expression for the leverage statistic becomes:

h 5 mt ~MRM t!21m (64)

16.2.6 In PCR and PLS, the leverage statistic for a sample
with spectrumx is obtained by substituting the decompositions
for PCR, or for PLS, into Eq 61. The statistic is expressed as:

h 5 sts (65)

NOTE 16—If the scores from the PCR or PLS model are not normalized,
then the form of Eq 65 becomesD2= st (StS)−1s

16.2.7 If a weighted PCR or PLS regression is used, the
expression for the leverage statistic becomes

h 5 st ~StRS!21s (66)

16.3 Outlier Detection During Calibration:
16.3.1 Two types of outliers can be identified during the

calibration procedures. The first type of outlier is a sample that
represents an extreme composition relative to the remainder of
the calibration set. These samples have very high leverage on
the regression results; that is, they are largely responsible for
the determination of at least one of the regression coefficient
values. Generally, there is insufficient data in the calibration set
to statistically determine the accuracy of reference values
associated with these high leverage samples. Their inclusion in
the calibration may lead to erroneous estimations of similar
samples if the reference value for the high leverage sample is
in error. The second type of outlier is one for which the
estimated value differs from the reference value by a statisti-
cally significant amount. Such outliers indicate either an error
in the reference measurement or a failure of the model.

16.3.2 High-leverage samples are identified based on the
leverage statistic,h. For all types of linear calibrations de-
scribed above, the average leverage statistic for all of the
calibration sample spectra has a value ofk/n wherek is the
number of variables in the regression (the number of wave-
lengths in MLR, the number of principal components, or the
number of PLS latent variables), andn is the number of
calibration samples. On average, each sample contributesk/n
of the spectral variables. For samples that haveh > 3k/n, the
sample spectrum is contributing a significant fraction to the
definition of one of the spectral variables and to the regression
coefficient associated with this variable. Samples withh > 3k/n
should be eliminated from the calibration set in the develop-
ment of the model.

NOTE 17—If the leverage statistic is scaled as described in(25), anf test
can be employed for outlier detection.

16.3.3 If calibration spectra withh >3k/n are eliminated
from the calibration set, and the model is rebuilt, it is not
uncommon for additional spectra withh >3k/n to be identified
for the new model. This occurrence is most likely if removal of
samples reducesk, but can also be caused merely by scaling
changes to the multivariate space induced by changes inn.
When repetitive application of the 3k/n rule continues to
identify outliers, the outlier test is said to “snowball.” If
“snowballing” occurs, it may indicate some problem with the
structure of the spectral data set. The variable space of the
model should be examined for unusual distributions or clus-
terings.

16.3.3.1 If the following sequence occurs during the devel-
opment of a model, the 3k/n outlier test can be relaxed: (1) a
first model is built on an initial calibration set, (2) calibration
spectra withh >3k/nare eliminated from the calibration set, (3)
a second model using the same number,k, variables is built on
the subset of calibration spectra, and (4) calibration spectra
with h >3k/n are identified for the second model. The second
model should be used providing that no calibration samples
haveh greater than 0.5.

16.3.3.2 If (1) a first model is built on an initial calibration
set, (2) calibration spectra withh >3k/nare eliminated from the
calibration set, and (3) a second model using fewer variables is
built on the subset of calibration spectra, the 3k/n outlier test
should not automatically be relaxed. Instead, the first model
should be rebuilt using the lower number of variables and the
sequence in 16.3.3.1 should be applied to the new model.

16.3.4 A second type of outlier is one for which the
estimated value yˆ differs by a statistically significant amount
from the value from the reference method, y. Such outliers can
be detected based on studentized residuals. Ifei is the differ-
ence between the estimated value yˆ i and the reference value yi

for the ith sample in the calibration set, andhi is the leverage
statistic for that sample, the studentized residuals for theith

sample are given by:

ti 5
ei

SEC=1 2 h
(67)

16.3.4.1 The studentized residuals should be normally dis-
tributed with common variance. The studentized residuals
value can be compared to a t distribution value forn − k (or
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n − k − 1 if mean centered) degrees of freedom, to determine
the probability that the error in the estimate fits the expected
distribution. If not, the sample should be considered an outlier.
A more detailed discussion of studentized residuals can be
found in Refs26–27.

16.3.5 If a sample is identified as an outlier based on
studentized residuals or other similar tests, then the reference
value may be in error. When possible, the reference test should
be repeated to determine a correct value for the sample
(multiple tests are recommended). If the reference value is not
in error, then the large studentized residuals may indicate a
basic failure in the model. For estimation of component
concentrations, there may be sufficient spectral interferences to
preclude accurate estimation of the component for this class of
samples. For property estimation, some component that has a
significant effect on the property may not be detected. Remov-
ing outliers of this type without evidence of error in the
reference value should be avoided whenever possible, since
these samples may provide the only indication that the model
is not applicable to a certain class of materials.

16.4 Interpolation and Extrapolation of the Model During
Analysis:

16.4.1 The spectra of the calibration samples define a set of
variables that are used in the calibration of the multivariate
model. If, when unknown samples are analyzed, the variables
calculated from the spectrum of the unknown sample lie within
the range of the variables for the calibration, the estimated
value for the unknown sample is obtained by interpolation of
the model. If the variables for the unknown sample are outside
the range of the variables in the calibration model, the estimate
represents an extrapolation of the model.

16.4.2 Two types of extrapolation are possible. First, the
sample may contain the same components as the calibration
samples, but at concentration ranges that are outside the ranges
in the calibration set. Second, the sample may contain compo-
nents that were not present in the calibration samples.

16.4.3 The leverage statistic,h, provides a useful indication
of the first type of extrapolation. For the calibration set, one
sample will have a maximum leverage statistic,hmax. This is
the most extreme sample in the calibration set, in that, it is the
farthest from the center of the space defined by the spectral
variables. If the leverage statistic for an unknown sample is
greater thanhmax, then the estimate for the sample clearly
represents an extrapolation of the model. Providing that outli-
ers have been eliminated during the calibration, the distribution
of h should be representative of the calibration model, andhmax

can be used as an indication of extrapolation.

NOTE 18—Comparison of the spectral variables for an unknown against
the range of each spectral variable in the calibration model could be done,
and extrapolation of any single variable could be taken as extrapolation of
the model. The use of the leverage statistic as an indicator of extrapolation
may not detect certain spectra which are slight extrapolations on one or
more spectral variables; however, significant extrapolation of any one
variable will result in a high leverage statistic, and thus detection of
extrapolation. Use of individual variables in tests for extrapolation is not
recommended since it can unduly restrict the range of samples to which
the model is applicable.

16.4.4 The second type of extrapolation of the model,
namely, the presence of a new component, can be detected by

comparing an estimate of the unknown spectrum derived from
the model to the measured spectrum of the unknown.

16.4.4.1 For PCR, an estimate of the spectrum of the
unknown can be calculated as:

xt 5 ŝt(Lt (68)

where theŝ is the vector of scores. Similarly for PLS:

xt 5 ŝtL t (69)

where theŝ is the vector of scores. The difference between the
estimated spectrum and the actual spectrum can be calculated
as:

r 5 x 2 x (70)

16.4.4.2 The root mean square spectral residuals (RMSSR)
for the spectrum can then be calculated as:

RMSSR5Œr tr
f (71)

NOTE 19—Some commercial software packages may calculate other
statistics related to RMSSR, or may call RMSSR by some other name. The
model developer should verify what statistics are used in the software to
indicate how well the model fits a spectrum being analyzed. The RMSSR
is intended as an example of how such a calculation can be done. Other
similar statistics can be used.

16.4.5 The RMSSR values can be calculated for each of the
calibration samples. One of the calibration samples will exhibit
a maximum RMSSR, RMSSRmax. Assuming that outliers have
been removed prior to the development of the calibration
model, RMSSRmax can be used to calculate a cutoff above
which RMSSR values for unknown spectra are to be taken as
evidence of extrapolation of the model.

16.4.6 In general, the RMSSRmax cannot be used directly to
set the cutoff for indicating extrapolation. For PCR and PLS
models, some of the spectral noise characteristics of the
calibration spectra are always incorporated into the spectral
variables. The RMSSR values calculated for spectra used in the
calibration will thus generally be lower than corresponding
values calculated for spectra of the same samples which are not
used in the model development. For estimating a suitable cutoff
RMSSR value to serve as an indication of extrapolation, the
following procedure is recommended.

16.4.6.1 Replicate spectral measurements (at least seven) of
several (at least three) of the calibration samples should be
made. The replicate measurements should include all steps in
the measurement procedure (for example, background spec-
trum collection, loading of the sample, and measurement of the
spectrum).

16.4.6.2 One spectrum from the set is to be used in the
development of the calibration model. The RMSSR values for
the spectra used in the calibration are calculated. The RMSS-
Rcal (i) is the value for the spectrum of Samplei.

16.4.6.3 The remaining replicate spectra are analyzed using
the calibration model, and RMSSR values are calculated and
averaged for each sample. The RMSSRanal (i) is the average
RMSSR for the replicate spectrum of Samplei.

16.4.6.4 The ratios of the RMSSR values from the analyses
to those from the calibration are calculated and averaged, and
RMSSRmax is multiplied by the average ratio to obtain the
cutoff:
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RMSSRlimit 5 F(
RMSSRanal~i!
RMSSRcal~i!

G RMSSRmax (72)

16.4.6.5 If the RMSSR value for an unknown sample being
analyzed exceeds RMSSRlimit , then the analysis of the sample
represents an extrapolation of the model.

16.4.7 Statistics comparable to RMSSR cannot be calcu-
lated for multiple linear regression. The MLR is thus incapable
of detecting the second type of extrapolation, namely, the
presence of a new component that was not in the calibration
samples. Care should be exercised when applying MLR in
systems where the calibration set used in the development of
the MLR model may not represent the total range of sample
compositions that will be encountered during analyses. In such
cases, MLR should be supplemented with other techniques to
determine if the sample being analyzed falls within the scope
of the calibration. For example, outlier statistics from PCR
models developed on the same calibration set could be used for
this purpose.

NOTE 20—For PLS models, residuals calculations such as RMSSR are
not always a useful indicator of outliers. If, during calibration, a
significant percentage of the spectral(X-block) variance due to signal is not
used in the model, then the model residuals used to calculate RMSSRcal

may contain significant contributions due to calibration sample component
absorptions. In such cases, RMSSRlimit values calculated on the basis of
such RMSSRcal values may be too large to detect model extrapolation due
to new chemical components in samples being analyzed.

The procedure described in 15.3.3 can be used to estimate the
percentage of the totalX-block variance that is due to signal. If the
variance included in the model is significantly less than the signal
variance, then the modeler may wish to supplement the PLS model with
a PCR model built on the same data. RMSSR statistics from the PCR
model are then used for outlier detection. The number of variables used in
the PCR model should be sufficient to account for the signal variance.

16.4.8 Nearest Neighbor Distance—If the calibration
sample spectra form multiple clusters within the variable
space, the spectrum of the unknown being analyzed can have a
D2 less thanD2

maxyet fall into a relatively unpopulated portion
of the calibration space. In this case, the sample being analyzed
contains the same components as the calibration samples (since
the sample is not a RMSSR outlier), but at combinations that
are not represented in the calibration set. The spectrum of the
unknown does not belong to any of the calibration sample
spectra clusters, and the results produced by application of the
model may be invalid. Under these circumstances, it is
desirable to employ a Nearest Neighbor Distance test to detect
unknown samples that fall within voids in the calibration
space.

16.4.8.1 Nearest Neighbor Distance, NND, measures the
distance between the spectrum being analyzed,x, and indi-
vidual spectra in the calibration set,xi.

NND 5 min@~x 2 xi!
t ~XXt!21 ~x 2 xi!# (73)

16.4.8.2 For MLR, NND is calculated as

NND 5 min@~m 2 mi!
t ~MM t!21~m 2 mi!# (74)

16.4.8.3 For PCR and PLS (with orthogonal scores), NND
is calculated as

NND 5 min@~s2 si!
t ~s2 si!# (75)

16.4.8.4 NND values are calculated for all the calibration

sample spectra. A maximum NND value is determined. This
value represents the largest distance between calibration
sample spectra.

16.4.8.5 During analysis, the NND value is calculated for
the unknown sample spectrum relative to the calibration
spectra. If the calculated value is greater than the maximum
NND from 16.5.3, then the minimum distance between the
process sample spectrum and the calibration spectra is greater
than the largest distance between calibration sample spectra,
the unknown sample spectrum falls within a sparsely populated
region of the calibration space. Such samples are referred to as
Nearest Neighbor Outliers.

17. Selection of Calibration Samples

17.1 For the development of a multivariate model, an ideal
calibration sample set will:

17.1.1 Contain samples which provide examples of all
chemical components which are expected to be present in the
samples which are to be analyzed using the model, thereby
ensuring that analyses involve interpolation of the model;

17.1.2 Contain samples for which the range of variation in
the concentrations of the chemical components exceeds the
range of variation expected for samples which are to be
analyzed using the model, thereby ensuring that analyses
involve interpolation of the model;

17.1.3 Contain samples for which the concentrations of
chemical components are uniformly distributed over their total
range of variation;

17.1.4 Contain a sufficient number of samples to statistically
define the relationships between the spectral variables and the
component concentrations or properties to be modeled.

17.2 For simple mixtures, calibration samples can generally
be prepared to meet the criteria above. For complex mixtures,
obtaining an ideal calibration set is difficult, if not impossible.
The statistical tests that are used to detect outliers guard against
non-ideal calibration sets. The RMSSR values detect when
samples being analyzed contain components that are not
represented in the calibration set (violation of criterion 1
above). Leverage statistics detect when samples being ana-
lyzed are outside the concentration ranges represented in the
calibration set (violation of criterion 2). Outlier detection
during model development identifies components for which the
range of concentrations in the calibration set is not uniform
(violation of criterion 3).

17.3 The number of samples that are required to calibrate an
infrared multivariate model (see 17.1.4) depends on the com-
plexity of the samples being analyzed. If the samples to be
analyzed contain only a few components that vary in concen-
tration, then there will be a small number of spectral variables,
and a relatively small calibration set is adequate to define the
relationship between the variables and the concentrations or
properties. If a larger number of components vary in the
samples to be analyzed, then a larger number of calibration
samples is required for the model development. Determining
whether or not a set of calibration samples is adequate can only
be done after a model is developed and an estimate of the
number of spectral variables required for the model is made.

17.4 If a multivariate model is developed using three or
fewer variables, then the calibration set should contain a
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minimum of 24 samples after elimination of outliers.
17.5 If a multivariate model is developed usingk (>3)

variables, then the calibration set should contain a minimum of
6k spectra after elimination of outliers. If the model is mean
centered, a minimum of 6(k + 1) spectra should remain.

NOTE 21—6k is chosen to ensure at least 20 df in the model for
statistical testing, and to ensure that there is an adequate number of
samples to define the relationship between the spectral variables and the
concentration or property values.

17.6 For some spectroscopic analyses, it is possible to
calibrate using gravimetrically or volumetrically prepared
mixtures which contain significantly fewer components than
the samples which will ultimately be analyzed. For these
surrogate methods, the outlier statistics described herein are
not strictly appropriate since all actual samples are by defini-
tion outliers relative to the simplified calibrations. Thus,
surrogate methods cannot strictly fulfill the requirements of
this practice. Surrogate methods should, however, follow the
requirements described herein for the number and range of
calibration samples.

18. Validation of a Multivariate Model

18.1 Validation of an infrared multivariate model is accom-
plished by applying the model for the analysis of a set ofv
validation samples, and statistically comparing the estimates
for these samples to known reference values. Validation
requires thorough testing of the model to ensure that it
performs up to the expectations derived from the calibration set
statistics.

18.2 Validation Sample Set:
18.2.1 For the validation of a multivariate model, an ideal

validation sample set will:
18.2.1.1 Contain samples that provide examples of all

chemical components which are expected to be present in the
samples which are to be analyzed using the model;

18.2.1.2 Contain samples for which the range of variation in
the concentrations of the chemical components is comparable
to the range of variation expected for samples that are to be
analyzed using the model:

18.2.1.3 Contain samples for which the concentrations of
chemical components are uniformly distributed over their total
range of variation; and

18.2.1.4 Contain a sufficient number of samples to statisti-
cally test the relationships between the spectral variables and
the component concentrations or properties that were modeled.

18.2.2 For simple mixtures, validation samples can gener-
ally be prepared to meet the criteria in 18.2.1.1-18.2.1.4. For
complex mixtures, obtaining an ideal validation set is difficult
if not impossible.

18.2.3 The number of samples needed to validate an infra-
red multivariate model depends on the complexity of the
model. Only samples whose analyses are found to be interpo-
lations of the model should be used in the validation procedure.
If five or fewer spectral variables are used in the model, then a
minimum of 20 interpolation samples is recommended. Ifk >
5 spectral variables are used in the model, then a minimum of
4k interpolation samples should be used in the validation. In
addition, the validation samples should:

18.2.3.1 Span the range of concentrations or property values

for which the model was developed; that is, the span and the
standard deviation of the range of concentrations or property
values for the validation samples should be at least 95 % of the
span and the standard deviation of the range of concentrations
or property values in the model, and the concentration or
property values for the validation samples should be distributed
as uniformly as possible across the range; and

18.2.3.2 Span the range of spectral variables for which the
model was developed; that is, if the range of a spectral variable
in the calibration model is froma to b, and the standard
deviation of the spectral variable isc, then the spectral
variables estimated for the validation samples should cover at
least 95 % of the range froma to b, and should be distributed
as uniformly as possible across the range such that the standard
deviation in the spectral variables estimated for the validation
samples will be at least 95 % ofc.

18.2.4 Determination of whether a validation set is adequate
will generally require that the set be analyzed so that the
spectral variables for the set can be determined. Samples
whose analyses are extrapolations of the model should not be
included in the validation set. If the validation set does not
meet the criteria in 18.2.3.1 and 18.2.3.2, additional validation
samples should be taken.

18.3 Validation Spectra Measurement and Analysis—
Spectra of validation samples should be collected using exactly
the same procedures as were used to collect spectra of the
calibration samples. Reference values for the validation
samples should be obtained using the same reference method
as was used for the calibration samples. Spectra should be
analyzed using the multivariate model to produce estimates of
the component concentrations or properties, and the statistics
described in Sections 18 and 19 should be calculated.

18.4 Validation Error:
18.4.1 If v (a vector of dimensionsv by one) are the

estimates obtained by analysis of the spectra of thev validation
samples, andv are the corresponding values measured by the
reference method, then the validation error,e is given by:

e5 v 2 v (76)

18.4.2 If multiple reference values are available for some of
the validation samples, then the average of the individual
reference measurements can be used inv, and the variance
removed by calculating the averages should be calculated using
Eq 52.

18.5 Variance of the Validation Error—The variance of the
error of the validation measurements is calculated as:

VARv 5 etRe1 savg
2 5 (

i 5 1

v

(
j 5 1

ri

~vij 2 vi!
2 (77)

wheres2
avg is zero andR is an identity matrix if individual

reference measurements are used inv.

18.6 Standard Error of Validation:
18.6.1 The standard error of validation (SEV) is given by:

SEV5ŒVARv

dv
5 !(

i 5 1

v

(
j 5 1

ri

~vij 2 vi!
2

(
i 5 1

v

ri

(78)

dv is the total number of reference values available for allv
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validation samples. SEV is the standard deviation in the
differences between reference and IR estimated values for
samples in the validation set. The standard error of validation
is sometimes referred to as a standard error of prediction. A
bias corrected version of this statistic has also been defined as
the standard error of performance. To avoid confusion between
two terms that are both abbreviated SEP, the use of SEV is
preferred in these practices.

18.6.2 Studentized residuals testing can be applied to the
estimates of the validation set to detect possible errors in the
reference values.

18.7 Validation Bias—The average bias for the estimation
of the validation set, ev̄, is calculated as:

ēv 5
(

j 5 1

v
riei

dv
5

(
i 5 1

v

(
j 5 1

ri
~vij 2 vi!

(
i 5 1

v
ri

(79)

whereri is 1 if individual reference values were used, or is the
number of reference values that were averaged for theith

validation sample if averages are used.dv is the total number of
reference values used in the calculation.

18.8 Standard Deviation of Validation Errors—The stan-
dard deviation of the validation errors, SDV, is calculated as

SDV 5Œ(
i 5 1

v
ri~ei 2 ēv!

2 1 savg
2

dv 2 1 5 !(
i 5 1

v

(
j 5 1

ri
@~vij 2 vi! 2 ēv#

2

~ (
i 5 1

v

ri! 2 1

(80)

where ri is 1 ands2
avg is 0 if individual reference measure-

ments are used in calculatingŷ.

18.9 Significance of Validation Bias:
18.9.1 A t test is used to determine if the validation

estimates show a statistically significant bias. At value is
calculated as:

t 5
| ēv| =dv

SDV (81)

Thet value is compared to criticalt values from Table A1.3 for
dv degrees of freedom.

18.9.2 If thet value is less than the criticalt value, then
analyses based on the multivariate model are expected to give
essentially the same average result as measurements conducted
by the reference method, provided that the analysis represents
an interpolation of the model.

18.9.3 If thet value calculated is greater than the tabulated
t value, there is a 95 % probability that the estimate from the
multivariate model will not give the same average results as the
reference method. Validity of the multivariate model is then
suspect. Further investigation of the model is required to
resolve the probable bias that is indicated.

18.10 Validation of Agreement Between Model and Refer-
ence Method:

18.10.1 The confidence limits on the estimates for the
validation samples should be calculated, and a determination
should be made as to whether the individual reference values
for the validation samples lie within the range from yˆ − t3

SEC3 =1 1 D2 to ŷ + t 3 SEC3 =1 1 D2 . If more
than 5 % of the reference values fall outside this range, then the
confidence limit estimates based on SEC are questionable, and
further testing is required to demonstrate the agreement be-
tween the model and the reference method.

18.10.2 An alternative method can be used to demonstrate
agreement between the model and the reference method. This
alternative method is preferred when the precision of the
reference method is not constant across the range of reference
values used in the calibration, but can be applied even when the
precision is constant. If R(yi) is the reproducibility of the
reference method at level yi, then the percentage of reference
values for which:

ŷi 2 R ~ ŷi! , yij , ŷi 1 R ~ ŷi! (82)

is calculated. If 95 % or more of the reference values fall
within this interval, then estimates produced with the multi-
variate IR model agree with those produced by the reference
method as well as a second laboratory repeating the reference
measurement would agree.

18.11 For multivariate analyses employing surrogate cali-
brations, a procedure similar to that described here for valida-
tion is often performed for the purpose of verifying that the
instrument is properly calibrated. This instrument qualification
procedure typically involves the analysis of gravimetrically or
volumetrically prepared mixtures that contain significantly
fewer components than the samples which will ultimately be
analyzed. There is no a priori relationship between the standard
error that is calculated from this procedure and the error
expected during application of the model to actual samples. To
avoid confusion, it is recommended that the procedure be
referred to as a spectrometer/spectrophotometer qualification,
not validation. Additionally, it is recommended that the stan-
dard error calculated from this procedure be referred to as a
Standard Error of Qualification (SEQsurrogate), not as a Standard
Error of Validation.

19. Precision of Infrared Estimated Values

19.1 The precision of values estimated from an infrared
multivariate model is calculated from repeated spectral mea-
surements. The number of samples for which repeat measure-
ments is made should be at least equal to the number of
variables used in the model, and never less than three. The
samples used for repeat spectral measurements should span at
least 95 % of the range of concentration or property values
used in the model. When possible, samples should be selected
to ensure that some variation on each spectral variable is
exhibited among the samples. At least six spectra should be
collected for each sample. The spectra should be analyzed and
values estimated. The average estimate for each sample should
be calculated, and the standard deviation among the estimates
should be obtained. Ifyij is the estimate for thejth spectrum of
ri total spectra for theith sample, then the average estimate for
this sample is:

ŷi 5
(

j 5 1

ri
ŷij

ri
(83)
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19.1.1 The standard deviation of the replicate estimates is
calculated as:

si 5 Œ(
j 5 1

ri
~ ŷij 2 ȳi!

2

ri 2 1 (84)

19.2 A x2 value is calculated using the standard deviation
values calculated in Eq 81:

x 2 5
2.3026

c ~r log s 2 2 (
i 5 1

ri

ri log si
2! (85)

where:

r 5 (
i 5 1

t

ri (86)

s 5Œ1
r (

i 5 1

t

risi
2 (87)

c 5 1 1
1

3~z2 1! S (
i 5 1

z 1
ri

2
1
r D (88)

and z is the number of samples for which replicate measure-
ments were made.

19.3 Thex2 value calculated in Eq 85 is compared with a
critical value from a chi-squared table (see Table A1.4) fort −
1 degrees of freedom. If the calculatedx2 value is less than the
critical value, then all of the variances for the replicated
measurements belong to the same population, and the average
variance calculated in Eq 87 can be used as a measure of the
repeatability of the infrared measurement. The infrared analy-
sis is expected to have a repeatability on the order of t3 =2
s̄ .

19.4 If the calculatedx2 value is greater than the critical
chi-squared value, then the repeatability of the infrared esti-
mate may vary with sample composition. In this case, the
infrared analysis is expected to have a repeatability that is no
worse than t3 =2 3 smax, wheresmax is the maximumsi

value for the replicate measurements.

20. Major Sources of Calibration and Analysis Error

20.1 General Sources of Error in Spectral Measurements—
Table 1 list some possible sources of error that can occur
during the spectral measurement and potential solutions for
these problems.

20.2 Sampling Related Errors—Table 2 lists errors arising
from sampling problems and possible solutions to these prob-
lems (28).

20.3 Sources of Calibration Error—Table 3 lists sources of
error in the development of the calibration model and possible
ways to minimize these errors.

20.4 Analysis Errors—Table 4 lists factors that can contrib-
ute to errors in the estimated values for unknown samples and
possible ways to minimize such errors.

21. Wavelength (Frequency) Sensitivity of a Multivariate
Model

21.1 Wavelength stability of spectrometers is often a critical
factor in the performance of a multivariate calibration. The
estimation of the sensitivity of a multivariate model to changes
in the wavelength scale provides a useful parameter against
which instrument performance can be judged. The wavelength
sensitivity of a model can be roughly estimated by the
following procedure:

21.1.1 Identify the samples in the calibration set that repre-
sent the extreme values of each of the spectral variables;

21.1.2 If the spectra are collected with a digital resolution of
D, then shift each spectrum by +D and by −D.

21.1.3 Analyze the shifted spectra, using the calibration
model, and calculate the change in the estimates between the
+D and −D spectra, and

21.1.4 Identify the spectrum showing the largest change
upon shifting. If the estimates areŷ+D and ŷ−D respectively,
then the wavelength (frequency) sensitivity of the model can be
estimated as:

0.13 D 3 SEC/~ ŷ1D 2 ŷ2D! (89)

21.2 The value calculated in Eq 89 is the wavelength shift
that, in the worst case (the most sensitive spectrum) will
produce a change in the estimate that is on the order of 5 % of
the standard error of calibration.

NOTE 22—The wavelength sensitivity of a model calculated in Section

TABLE 1 General Sources of Error in Spectral Measurements

Source of Spectral Error Possible Solution

Poor instrument performance Conduct instrument performance tests
regularly to monitor changes in instrument
performance
Analyze QC (Quality Check) sample to
determine if instrument performance
changes affect analysis

Absorbance exceeds linear
response range

Determine linear response range for
instrument
Choose pathlengths to keep bands of
interest in range

Optical polarization effects Use depolarizing elements
Variable sample presentation Improve sample presentation methods

Investigate commercially available sample
presentation equipment

Optical component
contamination

Inspect windows, etc., for contamination
and clean as necessary

TABLE 2 Sampling Related Errors

Sampling Error Possible Solution

Nonhomogeneity of
sample

Improve mixing guidelines or grinding procedures,
or both
For solids, average replicate repacks
For solids, rotate sample cups
Measure multiple aliquots from large sample
volume

Physical variation in solid
samples

Improved sample mixing during sample
preparation
Diffuse light before it strikes the sample using a
light diffusing plate
Pulverize sample to particle size of less than 40
µm (NIR) or 2 µm (MIR)
Average multiple repacks of each sample
Rotate sample or average five sample
measurements

Chemical variation in Freeze-dry sample for storage and measurement
sample with time Immediate data collection and analysis following

sample preparation
Identification of kinetics of chemical change and
avoidance of rapidly changing spectral regions

Bubbles in liquid
samples

Check pressure requirements for single-phase
sample
Check flow properties of cell for sample
introduction
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12 will depend on a variety of factors, including the optical and digital
resolution of the instrument relative to the bandwidths of the sample being
measured. Calculation of a wavelength sensitivity is done to provide a
useful diagnostic for analyses conducted on the same type of analyzer. The
wavelength stability of the analyzer can be compared to the value in Eq 83
as a means of monitoring the performance of the analyzer. Because the
value in Eq 83 is dependent on specific instrumental parameters, it should
generally not be used to compare the suitability of analyzers for a
particular application.

22. Calibration Transfer and Instrument Standardization

22.1 Calibration transfer refers to a process by which a
calibration model is developed using data from one spectrom-
eter, is possibly modified, and is applied for the analysis of
spectra collected on a second spectrometer. The calibration
transfer may require that spectral data for a common sample or
samples be collected on both instruments, and that some
transfer function be developed and applied to the spectra or the
model. A complete description of calibration transfer method-
ologies is beyond the scope of these practices.

22.2 Instrument standardization is a process where the
spectra collected on a second instrument are mathematically
adjusted in an attempt to match the spectra that would have
been collected on the instrument on which the calibration was

developed. Instrument standardization can also involve actual
adjustment of the instrument hardware to achieve such agree-
ment. Instrument standardization is one means of achieving
calibration transfer.

22.3 Calibration transfer or instrument standardization may
be required when maintenance is done to an instrument if such
maintenance produces a change in the spectral response large
enough to change the values estimated by the calibration
model. The calibration can be thought of as being transferred
from one instrument (before maintenance) to a second instru-
ment (after maintenance).

22.4 When a calibration transfer or instrument standardiza-
tion procedure is developed, it is necessary to demonstrate that
the performance of the model is not degraded during the
transfer. To demonstrate that a calibration transfer or instru-
ment standardization procedure preserves the performance of a
model, it is necessary to validate the model as described in
Section 18. Each calibration transfer or instrument standard-
ization procedure must be tested at least once by performing a
full validation of the transferred model. Once the success of a
particular calibration transfer or instrument standardization
procedure has been demonstrated for a particular type of
instrument, then quality control samples can be used to
evaluate additional transfers and standardizations.

23. Calibration Quality Control

23.1 When an IR, multivariate, analysis is used to estimate
component concentrations or properties, or both, it is desirable
to periodically test the analysis (instrument and model) to
ensure that the performance of the analysis is unchanged. To
perform such tests, it is sometimes necessary to choose one or
more quality control samples that will be used for this purpose.
A complete discussion of methods used to validate the perfor-
mance of an IR analyzer is beyond the scope of these practices.
The user is referred to Practice D 6122 which discusses
validation of IR analyzers for hydrocarbon analysis, and to
Refs 30 and 31 which discuss methods that have gained
acceptance within the agricultural community.

23.2 Control samples (materials for which reference values
have been measured using the reference method) can be
employed to monitor the performance of the analysis, provided
that the analyses of the control samples involve interpolation of
the model. The IR estimated values for the control samples are
compared to the reference values using established ASTM
procedures or alternative statistical tests(30, 32). These tests
will generally require that the IR estimated values and the
reference values agree to within the confidence intervals
defined in 15.3. Since the confidence limits are based on SEC,
and since SEC is often dominated by the error in the reference
measurement, these procedures may not provide the most
sensitive indication of changes in the performance of the
analysis. Alternatively, quality control (QC) samples can be
employed.

23.3 Quality control (QC) samples are used to monitor
changes in the performance of an analysis (instrument and
model), after the analysis has been validated. Quality control
materials should be identified at the time the model is devel-
oped based on the following criteria:

23.3.1 QC materials must be chemically and physically

TABLE 3 Sources of Calibration Error

Source of Calibration Error Possible Solution

Spectroscopy insensitive to
component/property being
modeled

Try alternative spectral region
Redefine requirement in terms of
measurable components/properties

Inadequate sampling of
population in calibration set

Review criteria for calibration set selection
Use sample selection techniques for
selecting calibration set (29)

Outlier samples within
calibration set

Employ outlier detection algorithms
Eliminate spectral outliers or find additional
examples
Eliminate reference data outliers or
remeasure

Reference data errors Analyze blind replicates to test precision
Correct procedural errors, improve analytical
procedures
Check and recalibrate reagents, equipment,
etc. (30)

Non-Beer’s Law relationship
(Nonlinearity due to
component interactions)

Develop multiple calibrations over smaller
concentration ranges

(Nonlinearity due to instrument
response)

Check dynamic range of instrument, Try
shorter pathlengths

Sensitivity to baseline shifts,
etc.

Preprocessing of data to minimize effects of
baseline

Transcription errors Two people cross-check or one person
triple- check all handscribed data

TABLE 4 Analysis Errors

Sources of Analysis Error Possible Solution

Poor calibration model Validate calibration model on representative
validation set

Poor instrument performance Check performance of instrument/model with
QC samples
Diagnose instrument problems with instrument
performance tests

Poor calibration transfer Validate calibration transfer and instrument
standardization procedures
Select calibrations with lowest noise, wave
length shift sensitivity, and offset sensitivity

Sample outside model range Employ outlier statistics to test that sample is
interpolation of model
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compatible with materials being analyzed, so as to not intro-
duce contaminants into the samples being analyzed, and not to
cause safety problems.

23.3.2 QC materials must be chemically stable when stored
and sampled. If mixtures are used, the composition of the
mixture must be known and methods for reproducing the
mixture must be established.

23.3.3 The spectra of the QC material must be compatible
with the model. Absorption bands for the QC material should
not exceed the linear response range of the instrument in
regions used in the calibration model. The spectra of the QC
material should be as similar as possible to spectra of the
calibration samples. However, analysis of the QC sample can
be an extrapolation of the model.

23.4 Spectral data on the QC material is collected during the
same time period that spectra of the calibration and validation
samples are collected. The QC material should be treated in
exactly the same fashion as other samples so that variations in
the spectra are representative of the variations which will occur
during the collection of spectra for unknowns. Separate
samples should be used for each measurement. A minimum of
20 spectra should be collected.

NOTE 23—If the QC spectra are collected over too short a time interval,
the variation seen in the spectra will be smaller than that typically
encountered in application of the model to unknowns, and QC limits set
based on these spectra will be excessively tight.

23.4.1 The spectra for the QC material are analyzed using
the calibration model, and the average value, yq̄c is calculated:

ȳqc 5
(

i 5 1

q
ŷi

q (90)

whereq is the number of spectra collected for the QC material.
The standard deviation in the estimated values,sqc, is calcu-
lated as

sqc 5Œ(
i 5 1

q

~ ŷi 2 ȳqc!
2

q 2 1 (91)

23.4.1.1 Dixon’s test can be applied to the individual
estimated values to identify outliers in the calculations in Eq 90
and Eq 91.

23.5 The QC material is analyzed periodically when the
analysis (instrument and model) is in use for analyzing
unknowns. The QC material is treated exactly the same as an
unknown sample being estimated. The estimated value for the
QC material is compared to yqc. The estimated value is
expected to be within the range from yqc − t 3 sqc to yqc + t 3
sqc 95 % of the time, wheret is the studentizedt value for q − 1
df and the 95 % confidence level.

23.5.1 If the analysis of the QC material is an interpolation
of the model, thensqc should be consistent with the repeat-
ability of the IR analysis as defined in Section 19. If the
analysis of the QC material is an extrapolation of the model,
then sqc may be somewhat higher than thesi calculated in
Section 19. However, since the control limits are still based on
the repeatability of the spectral measurement and do not
depend on the reference method, they are expected generally to
be tighter than those derived from control samples.

23.6 The use of bias and slope adjustments to improve
calibration or prediction statistics for IR multivariate models is
generally not recommended. Prediction errors requiring con-
tinued bias and slope corrections indicate drift in reference
method or changes in the instrument photometric or wave-
length stability. If a calibration model fails during the QC
monitoring step, the performance of the instrument should be
evaluated using the appropriate ASTM instrument performance
test, and any instrument problem that is identified should be
corrected. If control samples are used, checks should be
performed on the reference method to ensure that reference
values are correct. If instrument maintenance is performed,
calibration transfer or instrument standardization procedures,
or both, should be followed to reestablish the calibration.

24. Model Updating

24.1 It may sometimes be desirable to add additional
calibration samples to an existing model to increase the range
of applicability of the model. The new calibration samples may
contain the same components as the original calibration
samples but at more extreme concentrations, or new compo-
nents not present in the original calibration samples. The new
calibration samples may fill voids in the original calibration
space.

24.1.1 When a model is updated, the matrixX containing
the original calibration spectra is augmented with the spectra of
the additional calibration samples, and the vectory containing
the property or composition values for the calibration samples
is augmented with the values for the additional calibration
samples.

24.1.2 Outlier procedures described in 16.3 must be applied
to updated models in the same way they are applied to new
models. Thus, if additional samples are being added to increase
the span of the calibration, it may be necessary to add several
samples of each new type to avoid the added samples being
rejected as outliers.

24.2 When a calibration model is updated, it must be
revalidated. The requirements for validation samples for an
updated model are the same as for the original model (see
Section 18). The spectra used to validate the original model can
be used to validate the updated model, but they must be
supplemented to cover an adequate range as described in 18.2.
The percentage of new samples added to the validation set for
the updated model must be at least as large as the percentage of
new samples added to the calibration set.

25. Multivariate Calibration Questionnaire

25.1 The following questionnaire is designed to assist the
user in determining if a multivariate calibration conforms to the
requirements set forth in these practices.

25.1.1 If all of the following questions in 25.1.3-25.1.7 are
answered in the affirmative, then the calibration can be said to
have been developed and validated according to E 1655.

25.1.2 If any of the following questions in 25.1.3-25.1.7 are
answered in the negative, then the calibration can not be said to
have been developed and validated according to E 1655. If the
calibration method is MLR, PCR or PLS-1, the calibration may
be said to have been developed using mathematical techniques
described in E 1655. ASTM methods that reference E 1655
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should not claim calibration or validation via E 1655 unless all
of the following questions would have been answered in the
affirmative for the procedures followed during the collection of
round robin data on which the method is based.

25.1.3 The following questions apply to the mathematical
methodology used in the calibration:

25.1.3.1 Was the mathematical technique used in the cali-
bration MLR, PCR or PLS-1? (Sections 12 and 13)

25.1.3.2 Did the calibration methodology include the capa-
bility of detecting high leverage outliers using a statistic such
as the leverage statistic,h? (16.2)

25.1.3.3 Did the analysis methodology include the capabil-
ity to detect outliers via a statistic such as those based on
spectral residuals? (16.4.4-16.4.7)

25.1.4 The following questions apply to the calibration
model wheren is the number of samples in the calibration set,
andk is the number of variables (MLR wavelengths, Principal
Components, or PLS latent variables) in the model.

25.1.4.1 Wasn>6k if the model is not mean centered, orn >
6(k + 1) if the model is mean centered? (17.5)

25.1.4.2 Was the number of samples in the calibration set at
least 24? (17.4)

25.1.5 The following questions apply to the validation of
the model:

25.1.5.1 Was a separate set of validation samples used to
test the calibration? (18.2)

25.1.5.2 Were validation spectra which were outliers based
on either leverage (Mahalanobis Distance) or spectral residuals
excluded from the validation set? (18.2.3)

25.1.5.3 Was the number of validation samples greater than
4k if the model was not mean centered, or greater than 4(k + 1)
if the model was mean centered? (18.2.3)

25.1.5.4 Was the number of validation samples at least 20?
(18.2.3)

25.1.5.5 Did the validation samples span 95 % of the range
of the calibration samples? (18.2.3.1)

25.1.5.6 If SEC is the Standard Error of Calibration, do
95 % of the results for the validation samples fall within
6 t·SEC·=1 1 h of the reference values where t is the
Studentizedt value for n−k degrees of freedom (n−k−1 for
mean centered models), andh is the leverage statistic?
(18.10.1)

25.1.5.7 Do the validation results show a statistically insig-
nificant bias? (18.9.1)

25.1.6 Was the precision of the model determined usingt$
k $ 3 test samples andr $ 6 replicate measurements per
sample? (Section 19)

25.1.7 If the calibration and analysis methodology includes
preprocessing or postprocessing, are these calculations per-
formed automatically? (Sections 11 and 14)

26. Keywords

26.1 infrared analysis; molecular spectroscopy; multivariate
analysis; quantitative analysis
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ANNEXES

(Mandatory Information)

A1. STATISTICAL TREATMENT

A1.1 Dixon’s Test Functions for Rejection of Outliers

A1.1.1 This test provides a simple and highly efficient
method for determining whether all data obtained came from
the same population (with unknown mean and standard devia-
tion) and if one or more of the data points are suspect and
should be rejected.

A1.1.2 In applying this test the number of determinations
(N) are tabulated in increasing order of magnitude and desig-
nated asX1, X2, X3, . . . Xn.

A1.1.3 The values at the extremes of the tabulationX1 and
Xn are tested in turn in accordance with the number of values
in the tabulation.

A1.2 Select the proper expression shown as follows in
accordance with the number (N) of the values in the tabulation
and the upper or lower limit to be tested:

Outliers Under
Test

X1 Xn

For N =
3 to 7 r 5

~X2 2 X1!

~Xn 2 X1! r 5
~Xn 2 X~n 2 1!!

~Xn 2 X1!

8 to 10

r 5
~X2 2 X1!

~X ~n 2 1! 2 X1!

r 5
~Xn 2 X~n 2 1!!

~Xn 2 X2!

11 to 13

r 5
~X3 2 X1!

~X ~n 2 1! 2 X1!

r 5
~Xn 2 X~n 2 2!!

~Xn 2 X1!

14 to 30 r 5
~X3 2 X1!

~X ~n 2 2! 2 X1!
r 5

~Xn 2 X~n 2 2!!

~Xn 2 X3!

A1.3 Substitute the appropriate values in the equation
selected, calculate “r” and compare the value obtained to ther
value in Table A1.1 for the appropriate sample size (N).

A1.4 Reject the value if the calculated “r”is greater than the
tabulated value.

A1.5 Historical standard deviation as used in Fig. A1.1
means the standard deviation of a test method. It is established
by averaging the standard deviations of many samples tested
by many laboratories. The samples should cover the range of
usefulness of the test method and should include materials of
diverse composition if the latter has any effect on the repro-
ducibility of results.

A1.6 Sample Standard Deviationis merely the standard
deviation computed from the data obtained by a group of
laboratories testing the same sample using the same test
method. Obviously it may be much lower or much higher than

the historical standard deviation of the test method. Therefore
thesamplestandard deviation may be less reliable (because of
these random fluctuations) than thehistorical standard devia-
tion in determining the confidence limits of an average of
results of several determinations.

A1.6.1 If the historical standard deviation is unknown, the
sample standard deviation may be substituted for it in using the
nomograph and then multiplying the value found on the 95 %
CL scale by the factor given as follows for the number of
results in the average to obtain reliable 95 % confidence limits.

No. of Results 3 4 5 6 7
Factor 2.20 1.62 1.42 1.31 1.25
No. of Results 8 10 15 25 35
Factor 1.21 1.15 1.09 1.05 1.04

A1.7 To Find the Number of Determinations Needed in an
Average to Give Specific Confidence Limits—Lay a straight-
edge across the nomograph so that its edge passes through the
point on the right scale corresponding to the standard deviation
for the test and through the desired point on the confidence
limit scale. Read the number of determinations required from
the left scale.

A1.8 To Find the Confidence Limits of an Average—Using
the number of determinations in the average, lay a straightedge
from this point on the left scale through the point on the right
scale corresponding to the standard deviation. Read the confi-
dence limits from the intermediate scale.

TABLE A1.1 Critical Values for Rejection of a Discordant
Measurement (31)

Statistic N a = 0.05 a = 0.01

r10 3 0.941 0.988
4 0.765 0.889
5 0.642 0.780
6 0.560 0.698
7 0.507 0.637

r11 8 0.554 0.683
9 0.512 0.635

10 0.477 0.597
r21 11 0.576 0.679

12 0.546 0.642
13 0.521 0.615

r22 14 0.546 0.641
15 0.525 0.616
16 0.507 0.595
17 0.490 0.577
18 0.475 0.561
19 0.462 0.547
20 0.450 0.535
21 0.440 0.524
22 0.430 0.514
23 0.421 0.505
24 0.413 0.497
25 0.406 0.489
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TABLE A1.2 F-Distribution: Degrees of Freedom for Numerator

1 2 3 4 5 6 7 8 9 10 12 15 20

1 161 200 216 225 230 234 237 239 241 242 244 246 248
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4
3 10.1 9.55 9.28 9.12 9.01 8.94 8.87 8.85 8.81 8.79 8.74 8.70 8.66
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80
5 6.61 5.79 5.41 5.19 5.06 4.95 4.88 4.81 4.77 4.74 4.68 4.62 4.56
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44
8 5.32 4.46 4.07 3.54 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94

10 4.96 4.10 3.70 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.55
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12
` 3.84 3.00 2.50 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57

TABLE A1.3 Table of t at 5 % Probability Level

Degrees of Freedom t

1 12.706
2 4.303
3 3.182
4 2.776
5 2.571
6 2.447
7 2.365
8 2.306
9 2.262

10 2.228
11 2.201
12 2.179
13 2.160
14 2.145
15 2.131
16 2.120
17 2.110
18 2.101
19 2.093
20 2.086

TABLE A1.4 Critical x2 Values

NOTE 1— x2 values for (t − 1) degrees of freedom and 95 % confidence
level.

(t − 1) x2 (t − 1) x2 (t − 1) x2 (t − 1) x2

1 3.84 6 12.59 11 19.68 16 26.30
2 5.99 7 14.07 12 21.03 17 27.59
3 7.81 8 15.51 13 22.36 18 28.87
4 9.49 9 16.92 14 23.68 19 30.14
5 11.07 10 18.31 15 25.00 20 31.41
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A2. STATISTICAL TESTS COMMON TO NIRS METHODS (18, 19) (SUPPLEMENTAL INFORMATION)

A2.1 Common Symbols

A2.1.1 Throughout these practices, lowercase letters are
used to represent scalar quantities. Lower casebold letters are
used to represent vectors, and upper caseBOLD letters are
used to represent matrices. Italicized letters are used to

represent dimensions of vectors and matrices. Italicized sub-
scripts are sample, wavelength indices. For example:

yi = Scalar reference value for theith sample.

FIG. A1.1 Nomograph for Number of Determinations to Obtain Desired Confidence Limits
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ŷi = The estimated y-value forith sample based on a
regression model.

ȳ = The mean y value for all samples.
y = Vector of reference values forn samples.
xi = Spectral vector of lengthf for the ith sample.
X = Matrix of spectra, then rows ofX contain the spectra

of length f for n samples.
n = Number of samples used in a calibration model.
f = Number of frequencies or wavelengths used in a

calibration model.
k = Number of variables used in a calibration model.
r = Number of replicate measurements on a sample.
( = Capital sigma represents summation of all values

within parentheses.
R2 = Coefficient of multiple determination (R-squared).
R = The simple correlation coefficient for a linear regres-

sion for any set of data points; this is equal to the
square root of the R-squared value.

b0 = The bias or y-intercept value for any calibration
function fit to x, y data. For bias-corrected standard
error calculations the bias is equal to the difference
between the average reference analytical values and
the IR predicted values.

A2.2 Statistical Terms

A2.2.1 Sum of squares for regression:

SSreg 5 (
i 5 1

n

~ ŷi 2 ȳ! 2 (A2.1)

A2.2.2 Sum of squares for residual:

SSres5 (
i 5 1

n

~ ŷi 2 yi!
2 (A2.2)

A2.2.3 Mean square for regression:

MSreg 5
(

i 5 1

n

~ ŷi 2 ȳ! 2

k 2 1 (A2.3)

A2.2.4 Mean square for residual:

MSreg 5
(

i 5 1

n

~ ŷi 2 yi!
2

n 2 k 2 1 (A2.4)

A2.2.5 Total sum of squares:

SStot 5 (
i 5 1

n

~yi 2 ȳ! 2 (A2.5)

A2.3 Test Statistics

A2.3.1 The statistics discussed as follows have most com-
monly been applied to MLR models. The statistics assume that
the data has been mean centered in developing the model.
Similar statistics can be derived for PCR and PLS models, and
for models that are not mean centered.

A2.3.2 Coeffıcient of Multiple Determination
The coefficient of multiple determination is also termed the

R-squared statistic, or total explained variation. This statistic
allows determination of the amount of variation in the data that
is adequately modeled by the calibration equation as a total
fraction of 1.0. Thus R2 = 1.00 indicates the calibration equa-
tion models 100 % of the variation within the data. An
R2 = 0.50 indicates that 50 % of the variation in the differences

between the actual values for the data points and the predicted
or estimated values for these points are explained by the
calibration equation (mathematical model), and 50 % is not
explained. Squared values approaching 1.0 are attempted when
developing calibrations. R-squared can be estimated using a
simple method as outlined as follows.

A2.3.2.1 The R2 is determined using the equation:

R 2 5 1 2
(

i 5 1

n

~yi 2 ŷi!/~n 2 k 2 1!

(
i 5 1

n

~yi 2 ȳ! 2/~n 2 1!

5
SSreg

SStot
(A2.6)

A2.3.2.2 IfsR is the standard deviation of the errors in the
reference method measurement, andsY is the standard devia-
tion in the reference values used in the calibration (a measure
of the range spanned by the reference data), then R2 values that
exceed 1 −sR

2/sY
2 are probable indications of overfitting of

the data.
A2.3.3 F-Test Statistic for the Regression:
A2.3.3.1 This statistic is also termed F for regression, or

t-squared. F increases as the equation begins to model, or fit,
more of the variation within the data. With R-squared held
constant, the F value increases as the number of samples
increases. As the number wavelengths used within the regres-
sion equation decreases, F tends to increase. Deleting an
unimportant wavelength from an equation will cause the F for
regression to increase.

A2.3.3.2 The F-statistic can also be useful in recognizing
suspected outliers within a calibration sample set; if the
F-value decreases when a sample is deleted, the sample was
not an outlier. This situation is the result of the sample not
affecting the overall fit of the calibration line to the data while
at the same time decreasing the number of sample (n).
Conversely, if deleting a single sample increases the overall F
for regression, the sample is considered a suspected outlier. F
is defined as the mean square for regression divided by the
mean square for residual (see statistical terms in A1.2).

A2.3.3.3 The F for the regression is determined by the
equation:

F 5
R2~n 2 k 2 1!

~1 2 R2!k
5

MSreg

MSres
(A2.7)

A2.3.4 Student’s t-Value (For a Regression):
A2.3.4.1 This statistic is equivalent to the F statistic in the

determination of the correlation betweenX andy data. It can
be used to determine whether there is a true correlation
between an IR estimated value and the primary chemical
analysis for that sample. It is used to test the hypothesis that the
correlation really exists and has not happened only by chance.
A large t value (generally greater than ten) indicates a real
(statistically significant) correlation betweenX andy.

A2.3.4.2 The t for regression is calculated as:

t 5
R=n 2 k 2 1

=1 2 R2
(A2.8)

A2.3.5 Partial F or t-Squared Test for a Regression
Coeffıcient:

A2.3.5.1 This test indicates whether the addition of a
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particular wavelength (independent variable) and its corre-
sponding regression coefficient (multiplier) adds any signifi-
cant improvement to an equation’s ability to model the data
(including the remaining unexplained variation). Small F or t
values indicate no real improvement is given by adding the
wavelength into the equation.

A2.3.5.2 If several wavelengths (variables) have low t or F
values (less than 10 or 100, respectively), it may be necessary
to delete each of the suspect wavelengths, singly or in
combination, to determine which wavelengths are the most
critical for predicting constituent values. In the case where an
important wavelength is masked by intercorrelation with an-
other wavelength, a sharp increase in the partial F will occur
when an unimportant wavelength is deleted and where there is
no longer high intercorrelation between the variables still
within the regression equation.

A2.3.5.3 The t-statistic is sometimes referred to as the ratio
of the actual regression coefficient for a particular wavelength
to the standard deviation of that coefficient. The partial F value
described is equal to this t value squared; note that the t value
calculated this way retains the sign of the coefficient, whereas
all F values are positive.

A2.3.5.4 The partial F for a regression coefficient is calcu-
lated as:

SSres~all variables except one! 2 SSres~all variables!
MSres~all variables! (A2.9)

A2.3.6 The Bias Corrected Standard Error:
A2.3.6.1 Bias corrected standard error measurements allow

the characterization of the variance attributable to random
unexplained error within. The bias value, b0, is calculated as
the mean difference between reference and IR estimated
values:

b0 5
1
n (

i 5 1

n

~yi 2 ŷi! (A2.10)

A2.3.6.2 The bias corrected standard error is calculated as:

SEc 5Œ(
i 5 1

n

~yi 2 ŷi! 2 b0!
2

n 2 1 (A2.11)

Similar bias corrected values can be calculated for SECV.
A2.3.7 Standard Deviation of Repeatability (SDR):
A2.3.7.1 SDR is also referred to as the standard deviation of

difference (SDD) or standard error of difference for replicate
measurements (SD replicates). The SDR is calculated to allow
accurate estimation of the variation in an analytical method due
to both sampling, sample presentation, and analysis errors. The
SDR can be used as a measure of precision for the reference
analytical method.

A2.3.7.2 The SDR is calculated using:

SDR5Œ(
j 5 1

r

~yj 2 ȳj!
2

r 2 1 (A2.12)

A2.3.8 Offset Sensitivity:
A2.3.8.1 Also termed systematic variation or index of

systematic variation (ISV), offset sensitivity is equal to the sum

of all regression coefficients. The larger the value, the greater
is the sensitivity to particle size differences between samples or
to the isotropic (mirror-like) scattering properties of samples.
The offset sensitivity is used to compare two or more equations
for their “blindness” to offset variation between samples.
Equations with large offset sensitivities indicate that particle
size variations within a data set may cause wide variations in
the analytical result.

A2.3.8.2 The ISV is calculated as:

ISV 5 (
i 5 1

k

bi (A2.13)

A2.3.9 Random Variation Sensitivity:
A2.3.9.1 This statistic is also termed the index of random

variation (IRV). Random variation sensitivity is calculated as
the sum of the squares of the values of all regression coeffi-
cients. The larger the value, the greater the sensitivity to factors
such as: poor wavelength precision, temperature variations
within samples and instrument, and electronic noise. The
higher the value, the less likely the equation can be transferred
successfully to other instruments.

A2.3.9.2 The IRV is calculated using the expression:

IRV 5 (
i 5 1

k

=bi
2 (A2.14)

A2.3.10 Standard Error of the Laboratory (SEL) for Ref-
erence Chemical Methods:

A2.3.10.1 The SEL can be determined by using one or more
samples properly aliquoted and analyzed in replicate by one or
more laboratories. The average analytical value for the repli-
cates on a single sample is determined as:

ȳi 5 (
j 5 1

r

yij (A2.15)

A2.3.10.2 SEL is given by:

SEL5 Œ(
i 5 1

n

(
j 5 1

ni

~yij 2 ȳi!
2

n~ri 2 1!
(A2.16)

where thei index represents different samples and thej index
different measurements on the same sample.

A2.3.10.3 This can apply whether the replicates were per-
formed in a single laboratory or whether a collaborative study
was undertaken at multiple laboratories. Additional techniques
for planning collaborative tests can be found in Ref20. Some
care must be taken in applying Eq. 2.3.16. If all of the
analytical results are from a single analyst in a single labora-
tory, then the repeatability of the analysis is defined as
=2 t(n (r − 1), 95 %) SEL, where t(n (r − 1), 95 %) is the
Student’st value for the 95 % confidence level andn (r − 1)
degrees of freedom. If the analytical results are from multiple
analysts and laboratories, the same calculation yields the
reproducibility of the analysis. For many analytical tests, SEL
may vary with the magnitude of y. SEL values calculated for
samples having different yī can be compared by an F-test to
determine if the SEL values show a statistically significant
variation as a function of yī.
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