

Standard Practice for Establishing Shipbuilding Quality Requirements for Hull Structure, Outfitting, and Coatings¹

This standard is issued under the fixed designation F 2016; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice consists of three annexes: hull structure, outfitting, and coating. The subject of these annexes was selected for several reasons. Other commercial shipbuilding nations already have in place widely recognized standards of expectations in these areas. These constitute the most significant areas where workmanship is a critical factor in customer satisfaction. The cost associated with the labor involved in these three areas is a significant factor in construction manhours and overall schedules.

1.2 The standard criteria provided in this practice are intended to apply to conventional, commercial ship construction. In many cases, specialized, nonconventional vessels using nonstandard materials or built-to-serve sole requirements may require unique acceptance criteria that are beyond those provided in this practice.

2. Referenced Documents

- 2.1 ASTM Standards:
- D 4417 Test Methods for Field Measurement of Surface Profile of Blast-Cleaned Steel²
- E 337 Test Method for Measuring Humidity with a Psychrometer (the Measurement of Wet-Bulb and Dry-Bulb Temperatures³
- 2.2 ISO Standards:⁴
- ISO 8502–3 Assessment of Dust on Steel Surfaces Prepared for Painting (Pressure-Sensitive Tape Method)
- ISO 8502–6 Extraction of Soluble Contaminants for Analysis—The Bresle Method
- 2.3 NACE Standards:⁵

NACE No. 5 Surface Preparation and Cleaning of Steel and

Other Hard Materials by High-and Ultrahigh-Pressure Water Jetting Prior to Re-coating (SSPC-SP 12)

- NACE No. 7 Interim Guide and Visual Reference Photographs for Steel Cleaned by Water Jetting (SSPC-VIS 4(1))
- 2.4 SSPC Standards:⁶
- SSPC-AB 1 Mineral and Slag Abrasives
- SSPC-AB 2 Specification for Cleanliness of Recycled Ferrous Metallic Abrasives
- SSPC-PA 2 Measurement of Dry Coating Thickness With Magnetic Gages
- SSPC-SP 1 Solvent Cleaning
- SSPC-SP 2 Hand Tool Cleaning
- SSPC-SP 3 Power Tool Cleaning
- SSPC-SP 7 Brush-Off Blast Cleaning
- SSPC-SP 10 Near-White Blast Cleaning
- SSPC-SP 11 Power Toll Cleaning to Bare Metal
- SSPC-SP 12 Surface Preparation and Cleaning of Steel and Other Hard Materials by High-and Ultrahigh-Pressure Water Jetting Prior to Re-coating (NACE No. 5)
- SSPC-VIS 1-89 Visual Standard for Abrasive Blast Cleaned Steel
- SSPC-VIS 3 Visual Standard for Power- and Hand-Tool Cleaned Steel
- SSPC-VIS 4(1) Interim Guide and Visual Reference Photographs for Steel Cleaned by Water Jetting (NACE No. 7)
 2.5 NSRP Documents:⁷
- National Shipbuilding Research Project 6–97–1 "American Shipbuilding Quality Standards," dated May 28, 1999

3. Summary of Practice

3.1 This practice provides workmanship criteria to be applied to commercial shipbuilding or ship repair, or both. The criteria covers three primary phases of ship construction, that is, hull structure, outfitting, and coatings. Specific criteria to be

¹ This practice is under the jurisdiction of ASTM Committee F–25 on Ships and Marine Technologyand is the direct responsibility of Subcommittee F25.07on General Requirements.

Current edition approved May 10, 2000. Published October 2000.

² Annual Book of ASTM Standards, Vol 06.02.

³ Annual Book of ASTM Standards, Vol 11.03.

⁴ Available from American National Standards Institute, 11 W. 42nd St., 13th Floor, New York, NY 10036.

⁵ Available from National Association of Corrosion Engineers, PO Box 218340, Houston, TX 77218.

⁶ Available from Society for Protective Coatings, 40 24th St., 6th Floor, Pittsburgh, PA 15222–4656.

⁷ Available from The Librarian, Documentation Center, Marine Systems Division, University of Michigan Transportation Research Institute, 2901 Baxter Rd., Ann Arbor, MI 48109–2150.

selected from this standard should be as contractually agreed between the ship owner and shipbuilder.

4. Significance and Use

4.1 To achieve success in ship construction, it is necessary for the ship owner and the ship builder to agree on the level of quality in the final product. Classification rules, regulatory requirements, and ship specifications all help to define an acceptable level of construction quality; however, this guidance alone is not sufficient. It is up to the shipbuilder, therefore, to describe the level of workmanship sufficiently that will be reflected in the delivered ship, and for the ship owner to communicate his expectations effectively for the final product.

4.2 It is the intent of this document to contribute to these objectives in the following ways:

4.2.1 To describe a reasonable acceptable level of workmanship for commercial vessels built in the United States. 4.2.2 To provide a baseline from which individual shipyards can begin to develop their own product and process standards in accordance with generally accepted practice in the commercial marine industry.

4.2.3 To provide a foundation for negotiations between the shipbuilder and the ship owner in reaching a common expectation of construction quality.

4.3 The acceptance criteria herein are based on currently practiced levels of quality generally achieved by leading international commercial shipbuilders. These criteria are not intended to be a hard standard with which all U.S. shipyards must comply. Rather, they are intended to provide guidance and recommendations in the key areas that play a major role in customer satisfaction and cost-effective ship construction.

5. Keywords

5.1 coatings; hull structure; outfitting; quality; shipbuilding; workmanship

ANNEXES

(Mandatory Information)

A1. HULL STRUCTURE

I.	HULL S	STRUCTURE		QUALI	SHIPBUILDING TY STANDARDS
D	lvision	Mar	king UNIT:mm		
Section	Sub-section	Item	Standard Range	Tolerance Limits	Remarks
s e v		Size and shape compared with correct ones.	± 2	± 3	
			± 1.5	± 2.5	Espectally for the depth of floors and girders of double bottom.
with correct		Corner angle compared with correct ones	± 1.5	± 2	
compored	8 L GQ E 9 E	Curvature	t i	± 1.5	
fitting tine	General members	Location of member & mark for fitting compared with correct ones.	± 2	±3	
line and fi		Block marking(Panel block) compared with correct ones.	± 2.5	± 3.5	
Cutting [Location of member for fitting compared with correct ones.	± 2.5	± 3.5	

FIG. A1.1 Hull Structure

Ι.	HULL S	TRUCTURE			SHIPBUILDING QUALĪTY STANDARDS			
D	lvision	Gas Cu	tting	UNIT:m	UNIT:mm			
Section	Sub-section	Item	Standard Toler Range Lim		Tolerance Limits	Remarks		
	egpe	Strength Shop member Field	100μ 200μ (2nd cl) (3nd 150μ 300μ (3nd cl) (Dut	l cl) occorda Less Th cl) 50μ~10 100μ~2	 The class denoted in parentheses is in accordance with following definition. Less Than 50µ ist class 50µ~100µ 2nd class 100µ~200µ 3rd class More than 200µ out of class Special precautions are required in case where grinding or other treatments are requested. For angle cutting the same as the case in field. 			
и и Ф С	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Other Shop Field	100µ 200µ (2nd cl) (3rd 500µ 150µ (Оut cl) (Dut	cl) - Speci where one n cl) - For d				
Roughness	groove G	Strength Shop member Field	100μ 200μ (2nd cl) (3rd 400μ 800μ (Ουτ cl) (Ουτ	icl)				
	x vert d	Other Shop Field	100µ 1500 (2nd cl) (Dut 800µ 1500 (Out cl) (Dut	tel) Dµ				

FIG. A1.2 Hull Structure

I.	HULL S	TRUCTURE	SHIPBUILDING OUALITY STANDARDS
D	lvision		Material
Section	Sub-section	Item	Remarks
ور رو	Pitting	Grade of pitting Area Ratio x 5 10 15 20 25 30 mm 0.1 - A 0.2 - 0.3 - 0.5 - 0.6 - 0.7 - 0.8 - 	 Grade A pitting is minor and no repair is necessary. Grade B pitting is moderate and is to be repaired as necessary. Grade C pitting is severe and requires repair. Pitting that occurs on the boundary line between Grade A and Grade B can be considered minor and treated as Grade A pitting. Repairs shall be made as follows: Depth of pitting id Plate Thickness it Where 0.07t>d Grind Smooth (Note:Regardless of plate thickness, at no time should pitting that is 3mm deep or greater be repaired by grinding only) Where 0.2t≥d0.07t Grind and Weld Note: The area ratio is the estimated percentage of the plate surface that is pitted to the point where the surface appearance is unsatisfactory.
Surface fla	Flaking	Grade of surface flaking Area Ratio 12345678910 12 111111111111 0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9 1.0 C	 Grade A pitting is minor and no repair is necessary. Grade B pitting is moderate and is to be repaired as necessary. Grade C pitting is severe and requires repair. Pitting that occurs on the boundary line between Grade A and Grade B can be considered minor and treated as Grade A pitting. Repairs shall be made as follows: Depth of pitting id Plate Thickness it Where 0.07t2d Grind Smooth (Note:Regardless of plate thickness, at no time should pitting that is Jmm deep or greater be repaired by grinding only) Where 0.2t2d0.07t Grind and Weld Note: The area ratio is the estimated percentage of the plate surface that is pitted to the point where the surface appearance is unsatisfactory.
Casting Steel	Details of Casting Steel	Applicable to cases where defects are over 20% of thickness, or over 25mm deep and 150mm long.	When the removal of a surface defect exposes other significant defects such as cavities, cracks or inclusions, the casting is to be chacked using dye penetrant inspection, magnetic particle inspection or ultrasonic inspection and repaired accordingly, using an appropriate method of repair.
	Local delomination	(o)	Where delamination is minor it can be chipped or ground out and built-up with weld metal as shown in Figure (a). Where minor delamination occurs close to the plate surface grinding or chipping and weld metal build-up should be as shown in Figure (b). Repair of moderate delamination should be considered on a case by case basis.
Delamination	Severe delamtnatton. regutretng a local exchange of plate		Where delamination is fairly extensive, plating should be cropped out locally and replaced. The minimum width of plating to be cropped out is to be as follows: Highly Stressed Primary Longitudinal Strength Members: 1600mm Moderately Stressed Primary Longitudinal Strength Members: 300mm All Other Structural Members: 300mm Where severe delamination that affects the whole plate occurs, the whole plate must be replaced.

FIG. A1.3 Hull Structure

I.	HULL S	TRUCTURE	· · · · ·	OUALI	SHIPBUILDING TY STANDARDS		
DI	vision						
Section	Sub-section	Item	Standard Range	Tolerance Limits	Remarks		
tations tations a deeper than the rmai roughness.	Free adge	 H)Upper edge of sheer strake. 2)Strength deck between 0.61 @ and free edge of opening of shell plate. 3)Main longi strength members. 		Notch O	Notches are to be welded up prior to grinding in areas where a smooth finish is required. Sufficient weld metal should be laid such that ofter grinding there are no residual volds or cracks between the weld metal and the parent metal.		
C S B C D C D C D C D C		Longitudinal & Transverse Strength members		Indentation Si	Indentions greater than the stated tolerance limit are to be treated as notches.		
ches & lr s definec s three t imits fot		Others		Indentation ≤3	Indentions greater than the stated tolerance limit are to be treated as notches.		
0.00.00-		דם Shell plate & Upperdeck ש between 0.6l@ ש		Indentation S2	Indentions greater than the stated tolerance limit are to be treated as notches.		
Not Die: A notch 1 indent that 1 tolerance (Weld groove	τ 5 0		Indentation S3	Indentions greater than the stated tolerance limit are to be treated as notches.		
e c V V		Fillet Weld		Indentation S3	Indentions greater than the stated tolerance limit are to be treated as notches.		
	Straightness of plate edge	Both eide submerged arc welding	±0.4	±0.5			
	soge	Manual welding; semi automatic welding	±1.0	±2.5			
	Depth of edge preparation	K	±1.5	±2.0			
	Angle of edge preparation		±2*	±4*			
ç	Length of toper	(L compared with correct sizes)	±0.5d	±1.0d			
Dimension		Structural members other than double bottom floors and girders.	±3.5	±5.0			
ū	Stze of member	Depth of double bottom floors and girders.	±2.5	±4.0			
		Breadth of face bar.	±2.0	-3.0 +4.0			
	Edge preparation	Automatic welding	±2*	±4*			
		Semi-automatic & manual weld- ing.	±2*	±4*			

FIG. A1.4 Hull Structure

I.	HULL :	STRUCTURE		OUAL	SHIPBUILDING ITY STANDARDS
DI	ivision	Fabrica	tion		UNIT:mm
Section	Sub-section	Item	Standard Ronge	Toleronce Limits	Remarks
	Breadth of flange	Compored with correct size	±3.0	±5.0	
	dew ?c		±3.0	±5.0	Low and moderately stressed members.
	Оерth оf же b	Compared with correct size	±2.0	±3.0	Highly stressed members.
Flonged Longitudinal	Angle between flange and web	Compored with templote per 100 mm in breadth of flange	±2.5	±4.5	
	Curvature ar strotghtness in the plane of flange	Per 10m in length	±10	±25	
	Curvature or straightness in the plane of web		±10	±25	
		Per 10m in Length			

FIG. A1.5 Hull Structure

I.	HULL S	TRUCTURE		QUALI	SHIPBUILDING TY STANDARDS	
Di	vision	Fabrico	tion UNIT:mm			
Section	Sub-section	Item	Standard Range	Folerance Limits	Remarks	
	Stringer angle	Angle-4 F Compared with template	±1.5	±2.0		
	Strlage	Curvature 1000 Compared with template	±1.0	±1.5	Maximum permitted curvature per 100mm length of member.	
•		Curvature compared with template or check line.Per 10m in length.	±2.0	±4.0		
Angle & Built up plate	D	Deviation from. Inscribed curve Correct from inscribed.	±3.0	±5.0		
Ans	Frame & Long	Compared with template	±1.5	±3.0		
		Deviation of face plate	±1.5 per i00mm	±3.0 per 100mm		

FIG. A1.6 Hull Structure

I.	HULL S	TRUCTURE		QUAL	SHIPBUILDING ITY STANDARDS
D	lvision	Fobrica	tion		UNIT:mm
Section	Sub-section	Item	Standard folerance Range Limits		Remarks
Bracket	Breadth of flange	Compared with correct size	±3.0	±5.0	
Flanged Bracket	Angle between flange and web	Compared with templote per 100 mm in breadth of flange	±3.0	±5.0	
	box box es	Actual line of plote edge, compared with template.	±2.0	±4.0	
ре).	Templates for box shapes	Actual curved surface,compared with template.	±2.0	±4.0	For dimensions greater than IM, ±5.0.
(plane or box shape).	bla tes	Location of check line for lev- eling by sight,compared with template. (for transverse)	±1.5	±3.0	
templates (pla	Section templates	Location of check line for lev- eling by sight,compared with template. (for longitudinal)	±1.5	±3.0	
Bending		Shape,compared with template.	±1.5	±3.0	
B	Other templotes	Shape,compored with templote.	±1.5	±3.0	

FIG. A1.7 Hull Structure

€₽)	F	201	6	-	00
-----	---	-----	---	---	----

-

I.	HULL S	TRUCTURE	<u></u>			OUALI	SHIPBUILDING TY STANDARDS
D	lvision		Fabrica	110	n		UNIT:mm
Section	Sub-section	, Item S		Sto R	andard ange	Tolerance Limits	Remarks
	poq	Depth of corrugation			±3.0	±6.0	
	Corrugated bulkhead	Breadth of corrugation. Breadth (A) - + + +		A	±3.0	±6.0	
	Corruga	Depth Depth Breadth (B)		в	±3.0	±6.0	
	vali		Pitch		±6.0	±9.0	
	Corrugated wall		(q)		±2.0	±3.0	
Plate	ŭ	1 ρ 1 ρ 1 Depth (h)			±2.5	±5.0	
	Cylindrical structure (mast,post etc)	Diameters		Bu	±D 200 1.Max. ±5.0	<u>+D</u> 150 But,Mox. ±7.5	
	l l	In regard to the check li (for longitudinal)	lne		±2.5	±5.0	
	Curved shell lote	(for transverse)	_		±2.5	±5.0	
	L N	Gap between shell plate of section template	and		±2.5	±5.0	

FIG. A1.8 Hull Structure

I. HULL STRUCTURE					SHIPBUILDING QUALITY STANDARDS		
Di	vis	ton	Sub-assem	Ъl <i>у</i>	ly UNIT: mm		
Section	Sub	-section	Item	Standard Range	Tolerance Limits	Remorks	
		-assembling Stern frame	Distance between aft edge of boss and aft peak bulkhead (b)	±5	±10	upper gudgeon	
ų	S	Sub-asser Ing Stern	Twist of Sub-assembly (c)	±5	±10	(d)- Lower gudgeon	
Dimensions	ossemblie	Block Sub- tncluding (Deviation of rudder from shofi & (d)	±4	±8		
Accuracy of	ctal Sub-	Rudder	Twist of Rudder plate over its length	±6	±10	Correct or re-assemble partially	
Acci	Spee	peq	Flatness of top plate of main engine bed	±5	±10		
		eng l ne	Breadth and length of top plate of main engine bed	±4	±6		
		Matn	Others	The some	e as for	flat plate block Sub-assembly	

FIG. A1.9 Hull Structure

I.	HULL S	STRUCTURE		SHIPBUILDING QUALITY STANDARDS			
D	ivision	Sub-a	sembly		UNIT:mm		
Section	Sub-section	Item	Standard Range	Tolerance Limits	Remorks		
		Breadth of Sub-assembly	±4.0	±6.0	Cut,when too long		
		Length of Sub-assembly	±4.0	±6.0	Cut,when too long		
	Sub-assembly	Squoreness of Sub-assembly	±4	±8	Measured difference of di- agonal length of final marking lines. When the difference is over the limits,correct the final marking line.		
		Distortion of Sub-assembly	±10	±20	Measured on the face of web or girder.		
w C	Flat plate	Deviation of Interior members from shell plating	±5.0	±10.0	Excluding the case when interior members are con- nected by lapped joint. Frame etc.		
Dimensions		Breadth of Sub-assembly	±4.0	±8.0	Measured along the girth. Cut,when too long.		
٥٤		Length of Sub-assembly	±4.0	±8.0	Cut,when too long.		
Accuracy	plate Sub-assembly	Distortion of Sub-assembly	±10	±20	Measured on face of web or girder, Correct the final marking line,when the distortion exceeds the limits.		
	Curved plate Sub	Squareness of Sub-ossembly	±IO	±15	Difference of base line to marking or difference of diagonal lengths along marking d=i ei=- e2=1 odjust marking where practicable.		
		Deviation of intertor members from shell plating	The sam above.	The same as for the flat plate S above.			
		Breadth of each panel					
	Pick bick	Length of each panel	_				
	Blo	Squareness of each panel		•			
	Plate Block Sub-assembly	Distortion of each panel	above.	e as for	the flat plate Sub-assembly		
	Ple	Distortion of interior members from skin plating					

FIG. A1.10 Hull Structure

I.	HULL S	STRUCTURE		OUAL 1	SHIPBUILDING ITY STANDARDS
D	lvision	Sub-ass	embly		UNIT:mm
Section	Sub-section	Item	Standard Tolerance Range Limits		Remarks
	Plate Block Sub-assembly	Twist of Sub-assembly B.L. = baseline	±10	±20	Measured as follows:
		Deviation of upper/lower panel from & or B.L. Deviation of	±5	±10	Bit I Plue.
Dimensions		upper/lower panel from & or FR.L	±5	±10	Accuracy of this dimension
- su		Breadth of each panel			
0 E	p1,	Length of each panel			The same as for the flat
of D	5 5	Distortion of each panel			plate Sub-ossembly (previous page)
	Sub-assembl x	Deviation of interior members from skin plating			
Accuracy	Block S	Twist of Sub-assembly	±15	±25	The same as for the flat plate Sub-assembly (previous page)
	Plate Bl	Deviation of upper/lower panel from % or B.L.	±7	±15	Re-assemble portially when the deviation exceeds the
	م	Deviation of upper/lower ponel from & or FR.L	±7	±15	lime deviation exceeds the
	Block Sub-ossembly including storn frame	Distance between upper/lower gudgeon (a)	±5.0	±+0.0	

FIG. A1.11 Hull Structure

I.	I. HULL STRUCTURE				SHIPBUILDING QUALITY STANDARDS		
D	lvision	acc	uracy UNIT: mm				
Section	Sub-section	Item	Standard Range	Tolerance Limiis	Remarks		
Principal Dimensions	Length	Length between Perpendiculors	±50.0 Per 100M	Not defined	Applied to ships of 100 me- ters length and below. For the convenience of the measurement the point where the keel is connected to the curve of the stem may be substituted for the fore perpendicular in the meas- urement of the length.		
tpal D		Length between oft edge of boss ond moin engine	±25.0	Not defined			
Princ	Breadth	Molded breadth Amidships	±15.0	Not defined	Applied to ships of 15 me- ters breadth and above. Measured on the upper deck.		
	Depth	Molded depth Amidships	±10.0	Not defined	Applied to ships of 10 me- ters depih and above.		
	Flatness of Keel	Deformation for the whole length	±25.0	Not defined	Ups(-) and Downs(+) against the check line of keel sighting.		
		Deformation for the distance between two adjacent bulkheads	±15.0	Not defined	Sighting by the transit or using slits.		
f hull form	Forebody Alignment	Alignment of fore-body to baseline.	±30.0	Not defined	Ups(-) and Downs(+) against the baseline of the keel at the foremost frame on the flat part of the keel.		
Deformation of hull form		Alignment of oft-body to baseline.	±20.0	Not defined	Ups(-) and Downs(+) against the baseline of the keel at the aft- perpendicular.		
	Rise of Floor	Rise of floor amidships	±15.0	Not defined	The height of the lower turn of the bilge,compared with the planned height. Measured from the plane passing through the outer surface of the keel plate.		

FIG. A1.12 Hull Structure

I. HULL STRUCTURE SHIPBUILDING QUALITY STANDARDS					
Division			ding	UNIT: mm	
Section	Sub-section	Item	Tolerance Limits	Remarks	
	Height of readth of bead Flank angle dia		h:not defined B:not defined e≤90°	In case where e is over 90° it is to be repaired by grinding or welding to make e≤90°	
	Under cut (butt *eld)	Shell plate and face plate be- tween 0.61 @	over 90mm continuous d≤0.5	Repair using fine electrode. (Avold short beads for higher tensile steel)	
po o q		Other	d≤0.8		
Shape of b					
	d t g e J	Compared with Correct ones (l,d)	L:Leg Length d:Threat depth 20.91 20.9d	When over tolerance limits, weld up. (Avoid short beads for higher tensile steels)	
torston ding joint	Anglular distorsion welding joint	Shell plate between 0.6Lox	span of frame or beas WS6	When over tolerance limits, repair by line heating or re-weld after cutting and re-fitting.	
Dist weld		Fore and Aft shell plating and Transverse strength member	WS7		
o t	, c	Others	₩≤8		
	k welding Repairing of scar	.50HT .Cost steel TMCP type 50HT (ceq.>0.36%)	≥50	In case where short bead ts unavoidable, preheat to ±25°C. If short bead is made	
ъ	* 2° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	Grade E of mild steel	≥30	 Inadvertently, remove the bead by grinding, and weld over length of visible 	
bead	Tack bead of	TMCP type 50HT (ceq.≤0.36%)	210	crack.	
Short	Repairing of veiding bead	.50HT .Cast steel TMCP type 50HT (ceg.>0.36%)	≥50		
	dtr	Grade E of mild steel	≥30		
	Revenue	TMCP type 50HT (ceg.50.36%)	>30		

FIG. A1.13 Hull Structure

₩ F 2016 – 00

Ι.	I. HULLSTRUCTURE			SHIPBUILDING QUALITY STANDARDS		
D	tviston	We	lding	UNIT:mm		
Section	Sub-section	Item	Tolerance Limits	Remarks		
Arc strike		.50HT .Cost steel .Grode E of mild steel .TMCP type 50HT	not allowed	In case where arc-strike is made inadvertently, remove the hardened zone by grinding or weld over length of short bead on the arc-strike.		
Pre-heating	Temperature required pre-heating	ТМСР туре 50НТ (Сед.≤0.36%)	T≤0° C	In case where Ceq. of each plate are different in joint,tolerance of higher Ceq.to be applied.		
		F E C Cost steel Cost steel TMCP type 50HT C (Ceq.>0.36%) C	T≤5°C			
		Mild steel	T≤5°C			

FIG. A1.14 Hull Structure

I.	I. HULL STRUCTURE SHIPBUILDING OUALITY STANDARDS						
Division Alignment and Finis							
Section	Sub-section	Ite	m	Tolerance Limits	Remarks		
ance of ent weld	Butt weld to butt weld			₀≥30			
n distance adjacent w	0_		Main structure	015o	Where beads ore parallel.		
Minimum weld to a	Butt weld to fillet weld		Other structure	٥٤٥			
ΣΦ	utt « 11 let		Moin structure	₀≥5			
	8,		Other structure	0≤ه			
Gap between members	Gap between plate and stiffening member	Stiffening memb perpendicular t when C>3. any fo Treatment can t 1)	o plate.	C≤3	Gap between members is to be less than 3mm.		
		Stiffening memb obliquely to pl (without edge p B	ote.	B≤3			
	Through place and tight plate		> C2	CI≤3			

FIG. A1.15 Hull Structure

🕼 F 2016 – 00

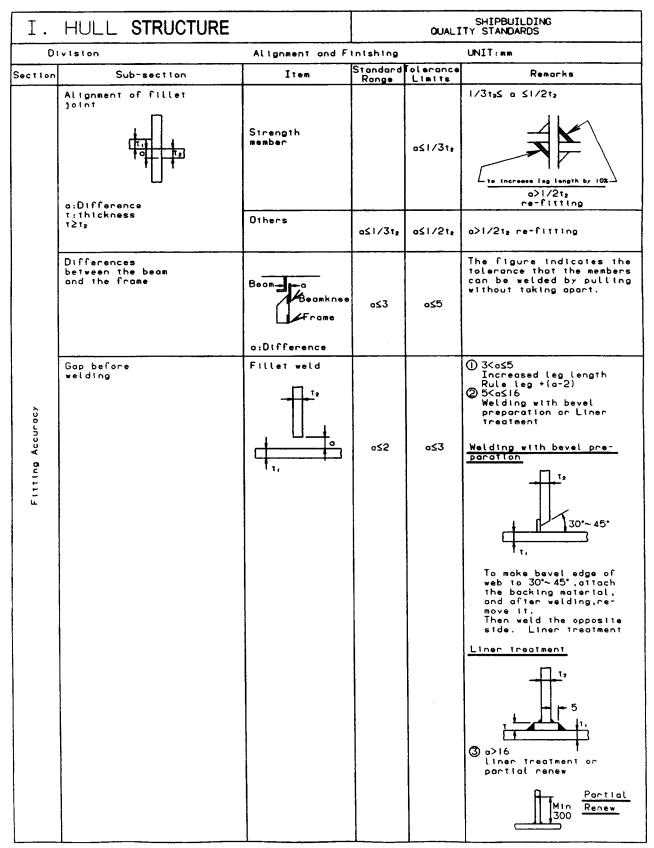


FIG. A1.16 Hull Structure

I. HULL STRUCTURE			SHIPBUILDING DUALITY STANDARDS		
D	lvision	Fabricat	tton UNIT:mm		
Section	Sub-section	Item	Standard Range	Tolerance Limits	Remarks
20CV		Butt weld (manual welding)	250<3.5	o≤5	 \$\begin{aligned}{llllllllllllllllllllllllllllllllllll
Fitting Accuracy	Gap before Welding	Butt weld (automatic welding) i.Two side submerged arc welding	O≤a≤O.8	a≤5	Where predicted to burn through, weld sealing bead.
		2.Manual or CO ₂ submerged arc welding	0≤₀≤3.5	o≤5	Where a is over 5mm, see manual welding.
		3.One side submerged arc welding with flux copper backing or flux backing OSaSI.(₀≤3	Where predicted to burn through, weld sealing bead.
		4. One side submerged arc welding with fiber backing	0≤o≤4	a≤7	Where predicted to burn through, adjust by scattering of metal powder or weld sealing bead.

FIG. A1.17 Hull Structure

I. HULL STRUCTURE				SHIPBUILDING QUALITY STANDARDS			
D	lvision	Alignment and F	Intshing	<u> </u>	UNIT:mm		
Section	Sub-section	Scope of staging sockets and lifting lugs to be removed	Standard Range	Folerance Limits	Remarks		
	in tank	Not to be removed.			 Lifting 1098 subjected to fatigue to be removed. Parts ruining appearance and passage to be removed 		
sockets	in engine room	Parts of ruining appearance and interfering with clear passage.			flush to base plate. ② Others to be removed by gas cutting at the bond zone.		
Stagtng	In hold	Under side of hold and hatch coaming.			Cut along		
S	exposed parts of shell upp DK etc	To be removed.					
	in tonk	Not to be removed except disturbance of passage.					
Lifting lugs	in engine room	Part of ruining appearance and possages.					
	in hold	To be removed except back of deck.					
	exposed parts of shell upp DK etc	To be removed.					

FIG. A1.18 Hull Structure

I. HULL STRUCTURE					SHIPBUILDING QUALITY STANDARDS		
D	vision		Fabrication		UNIT:mm		
Section	Sub-section	Item		Standard Range	Colerance Limits	Remorks	
		5.CO ₂ one s (with bac	ide velding king mot'l)	2 5 058	o≤16		
cx		6.Electro g	as velding	95a516	o≤22		
Fttting Accuracy	Gap before Welding	7.Simplifie gos weldt		2 5 058	a ≤10		
F11				a≤2	o ≼3	() 3 <a≤5 ② a>5 Re-fitting</a≤5 	
	Alignment of butt joint	Strength me	amber		a≤0.15t (max 3)	a>0.15t or a>3 Refitting	
	tö tö a:Misalignmeni 1:Thickness(thinner pl)	Others			o≤0.2t (max 3)	a>0.2t or a>3 Refitting	
Cleaning up traces temporary attachments	Parts requiring good oppearance	Outside surface of shell plates, Exposed deck, Exposed super- structure		Grind flush		See Annex A3 for surfaces that are to be painted	
Cleaning v of temporary	Parts not requiring good appearance	Inside of tank Inside of celling Deck to be shield with deck com- position etc.		Grind only conspicuous parts finishing		See Annex A3 for surfaces that are to be painted	
Surface defect	Scor	Depth (d) Length (e) e≤10		d≤0.8		 ¹ d<0.07t(Max 3) Grinding or welding ² 0.07t≤d welding ² ¹ ¹	
				d≤1.0			

FIG. A1.19 Hull Structure

I. HULL STRUCTURE			SHIPBUILDING QUALITY STANDARDS			
Division		De	Deformation		UNIT:mm	
Section	Sub-section	Item	Standard Ronge	Tolerance Limits	Remarks	
		Paraliel part side	4	6		
	Shell plate	Parallel part bottom	4	6		
		Fore and oft part	5	7		
	Double bottom tank top plate		4	6		
	Bulkhead	Longl Bulkhead Trans Bulkhead Swash Bulkhead	6	8		
ĺ		Porallel port (Between 0.61©)	4	6		
	Strength deck	Fore and aft part	6	9	a I	
frame		Covered part	7	9		
ي 99	Second deck	Exposed part	6	8		
plata between frame	Second deck	Covered part	7	9		
of plat	Fore-castle deck Poop deck	Exposed part	4	6		
0 9 9		Covered part	7	9		
Flatness	Super Structure	Exposed part	4	6		
	deck	Covered part	7	9		
	Cross deck		5	7		
		Outside bulkhead	4	6		
	House bulkhead	Instde bulkhead	4	6		
		Covered part	7	9		
	Intertor member	Web of girder, trans	5	7		
	Floor and girder of double bottom		6	8		

FIG. A1.20 Hull Structure

Ι.	HULL STRUCT	URE	SHIPBUILDING QUALITY STANDARDS				
	Division	Alignment and	Alignment and Finishing				
Section	Sub-section	Item	Standard Ronge	Tolerance Limits	Remarks		
		Strength member in skin plate		8	Open the hole to over 750mm Open the hole to over		
	D<200	Others		6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 7 7 7 7 7	2000mm In case (B).open the hole to over 2000mm		
hull cuts		Strength member in skin plote		®	Method of treatment @ESpigot patch		
temporary hull	D≥200	Others		B or D	t t t t t t t t t t t t t t		
هو	Serration,Scallop Slot.			10 or 10	B:Close by butt welding. C:Close with lapping piece (Closing plate to be same thickness of base plate)		
Treatment					D: Where it is difficult from structual point of view to open the hole over 200mm, pre-heat and use a low hydrogen electrode. Inspect by rodiographic or ultrasonic inspection.		

FIG. A1.21 Hull Structure

€¶)∕	F	2016	_	00
------	---	------	---	----

I. HULL STRUCTURE				SHIPBUILDING QUALITY STANDARDS			
	Division	Det	Deformation UNIT:mm				
Section	Sub-section	Item	Standard Ronge	Tolerance Limits	Remarks		
3	Shall along	Parallel part	±2•/1000	±3•/1000	(+) e		
	Shell plate	Fore and aft part	±3e/1000	±4e/1000			
f frame	Deck and top plate of double bottom		±3•/1000	±4•/1000	(-)		
ton of	Bulkhead		±4e/1000	±5•/1000			
Devtation of	Accommodation	Deck	±3•/1000	±4•/1000			
		Outside bulkheod	±2e/1000	±3e/1000			
	Others		±5e/1000	±6e/1000			
	Distortion of deep girder and transverse (at the part of upper edge and flange)	Length of span	5	8			
	Distortion of longitudinal and transverse frame, beam and stiffener	e≤1000	5	8			
	(at the part of flange).	1000<•	3 + 2e/ 1000 (max 10)	6 + 2e/ 1000 (max 13)			
Mtscelloneous	Distortion of H pillar between decks.		4	6			
Misc	Distortion of cross tie.	Distortion of fore and aft direction. e, (cross tie only)	6	10	e, 1 1		
		Distortion of fore and aft direction. e, (cross tie + trans web)	12	16			
	Distortion of trip- ping bkt and small stiffener with web plate.	l part of free edge.		ĩ,	* t,		
	Distortion of foce plote		a=2 + 6/100	a=5 + b∕100	P.		

FIG. A1.22 Hull Structure

Ι.	HULL STRUCTU	RE		SHIPBUI DUALITY STANDA	
	Division	Miscellaneous	L	UNIT	: កាក
Section	Sub-section	Item	Standard Range	Tolerance Limits	Remarks
veided joint at tightness onstruction inspection	Sub assembly and assembly welded joint		Paint ofter hull block inspection	Not defined	Shop primer can be applied,
Painting for weided join 18st or construction	Erection welded joint		Point after tightness test.Butts of Skin PLTS are coated wash primer before final construction. Inspection. Point before tightness test.when tanks given special pro- tective coat ing are hyd- raulically tested.	construction inspection and before	
Draft Mark	Compared to the template		±1.0	±2.0	
Freeboard Mark	Compared to the template		±0.5	±0.5	

FIG. A1.23 Hull Structure

€∰)	F	201	6	_	00
-----	---	-----	---	---	----

I.	HULLSTRUCTU	RE		OUALI	SHIPBUILDING ITY STANDARDS
	Division	MLs	scellaneou	s	UNIT:mm
Section	Sub-section	Item	Standard Range	Tolerance Limits	Remarks
		Length	±5	±10	
	Principal dimensions of hatch coaming	Breadth	±5	±10	
Coamtra	Hatch Coamtro	Difference of diagonal length	±10	±15	
Hatch		End coaming	±3	±5	
	Deformation of horizontal stiffener	Side cooming	±5	±8	
		Deformation per one meter (random)	±2	±3	
		Breadth and Height	±4	±7	
	Opening of steel wall	Sill height	0~15	-10~+30	
e U		Deformation (per lm)	±2	±3	
of entrance		Breadth	±2	±3	
Opentng	Opening of deck (through type)	Length	±3	±3	
		Breadth	- 3~+2	-5~+3	
	Opening of deck (not through type)	Length	-3~+2	-5~+3	

FIG. A1.24 Hull Structure

A2. OUTFITTING

lvision	A. PIPE FABRICATION		SHIPBUILDING QUALITY STANDARDS				
Sub-section	1. STRAIGHT PIPE	Figure	Nominal Diameter (mm)	Standard Range (mm)	Tolerance Limits (mm)	Remarks	
L	Indicated length of pipe on drawing Length talerence d			±6	Not Defined		
Section	2. BENT PIPE			• • • • • • • • • • • • • • • • • • • •			
a. Single direction bending	Indicated lengths 1 & of pipe on drawing 1, Length tolerence d Length tolerence d, Design bending a*			±6 ±5	Not Defined Not Defined		
	angle Bend tolenance or			± *	Not Defined		
b. Two direction bending	Indicated lengths 1,1 of pipe on drawing 1,2 Length tolerence d Length tolerence d Length tolerence d Design bending a angles a Bend tolerance ar	$ \begin{array}{c} a_1^* + a_1^* \\ a_1^* + a_1^* \\ a_1^* + a_1^* \\ a_1^* + a_1^* \\ b_1^* \\$		±6 ±5 ±6 ±2*	Not Defined Not Defined Defined Not Defined		
c. Three direction bending	Indicated lengths I.I of pipe on drawing I. Length tolerence d Length tolerence d Length tolerence d Design bending a angles ar Bend tolerence ar	a [•] + a ₁ •		±5 ±5 ±5	Not Defined Not Defined Not Defined		
Section	3. Branch pipe						
	Indicated lengths (., of pipe on drawing , .; Length tolerence d Length tolerence d; Design angle a [*] Angle tolerance or			±5 ±5 ±5	Not Defined Not Defined Not Defined		

FIG. A2.1 Piping

€∰)	F	201	6	_	00
-----	---	-----	---	---	----

Ivision	A. PIPE FABRICATIO	N			SI SI		\$
Section	4. PENETRATION PIE	CE		QUALITY STANDARD			
Sub-section	Item		Figure	Nominal Diameter (mm)	Standard Range (mm)	Tolerance Limits (mm)	Remark
	Indicated lengths of pipe on drawing	ι.ι,					
	Length tolerence	d	a" + a, " center flange		±4	Not Defined	
	Length tolerence	d,			±4	Not Defined	
	Design penetration angle	۰	<				
	Angle tolerance	ο τ •	1 1		±1°	Not Defined	
Section	5. FLANGES			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
a. Angle of flange	Displacement of flange face	đ	d				
to pipe	Angle deviation from normal	°.	•••	< 150 2 150	a*≤1* d*≤1.5*		
b. Distortion of flonge face	Distortion dimension	d		<200 200-450 >500	≤0.5 ≤1.0 ≤1.5	<1.0 <2.0 <2.5	
c. Distance between fillet and butt welding beod	Distance between fillet and butt welding bead	đ					
d. Attochment of	Pipe setback from face of flange	а			1+1.5	Not Defined	
flange to pipe	Toe of weld setback from face of flange	d,					
e. Thread extension post nut	Length of thread protrusion	d				0-3 threads	
f. Distance between pipe	Distance between flange and bend	ι			7 <		
and bending area	Thickness of flange	τ					
	Bend radius Pipe diameter	r d			≥29		1
9.	Amount of flange	0	· > + = 6	+	o≤3		<u>+</u>
Alignment of flonges	offset Maximun distance between flange faces	c			c-b≤3		
	Minimun distance between flange	ь					

FIG. A2.2 Piping

I	. PIPIN	١G						
	vision	A. PIPE FABRICATION	1			SH QUALITY S	HIPBUILDING	3
	Section Sub-section	6. COUPLINGS	-	Figure	Nominal Digmeter	Standard Range	Tolerance Limits	Remarks
	o. Coupling (sleeve)	Length of coupling Length of pipe inside coupling Distance beween pipes inside	L l, lz		(mm)	(mm.) ≥3.⊺	(mm) not defined	l, & a vary according to pipe diameter
		couping Pipe thickness Distonce between inside of coupling ond outside of pipe	t d			1~3	not defined	
	b. Coupling misalignment	Distance between inside of coupling and outside of pipe	đ			\$2.0		
		Angle misolignment	о• d	o*		<5* ≤0.2		
	c, Coupling bell & socket	Distance between Inside of coupling and outside of pipe	o			50.2		
		Distonce pipe Inserted in socket	ι			251		
	d. Dresser coupling distance between pipe ends	Pipe thickness Distance between pipe ends	τ d			±10	not deftned	
	e. Dresser coupling pipe misaignment	Amount of misalignment	d			±3	±5	
D	ivision	B. PIPE BENDING		.				· · · · · · · · · · · · · · · · · · ·
	Section	I. ELLIPTICITY (ou	ut of	roundness)				
	Sub-section	Item		Figure		T	nits (unit: T	×)
					Bending Rodius	Cold Bending	Hot Bending	Remarks
	a. Steel and	$\frac{E[lipticity=}{(D_1-D_2)\times 100}$ (%)			RS2A	-	10	Tolerance limits o
	non-ferrous pipe		D	12	2A <rs3a 3A<rs4a< td=""><td>10</td><td>8</td><td>cold bending includes</td></rs4a<></rs3a 	10	8	cold bending includes
		Outside dia, of pipe before manufacturing		2	4A <r< td=""><td>10</td><td>5</td><td>that of high</td></r<>	10	5	that of high
		Major dia, of bent pipe	D					frequenc. Induction heating bending
		Minor dia. of bent pipe	D₂					Standard range no
		Nominal dia. Bending rodius	A R					defined

FIO	A 0 0	Distant
FIG.	AZ.3	Piping

30

₩ F 2016 – 00

vision Section	B. PIPE BENDING	t of	roundness)	-	SH QUALITY S	HIPBUILDIN STANDARDS	G
				Tol	eronce Lim	itts (unit:	; %)
Sub-section	Item		Figure	Bending Radius	Cold Bending	Hot Bending	Remo
b. Al-brass & CuNî pîpe	Ellipticity= (<u>D</u> ,- <u>D</u>)XIOO(%) D Outside dia. of pipe before manufacturing Major dia. of bent pipe Minor dia. of bent pipe Nominal dia. Bending radius	D D, D ₂ A R		R52A 2A <r53a 3A<r54a 4A<r< td=""><td>15 10 10 8</td><td></td><td>Toler limit cold bendin that freque that bendin bendin Stand conge defin</td></r<></r54a </r53a 	15 10 10 8		Toler limit cold bendin that freque that bendin bendin Stand conge defin
Section	2. REDUCTION IN WA		HICKNESS		1	r · · · · · ·	- <u></u>
o. Steel pipe	Reduction in wall thickness = (t-t,)XIOO (%) T Original wall thickness Wall thickness after bending	t t,		R52A 2A <r53a 3A<r54a 4A<r< td=""><td>- 25 20 15</td><td>20 10 5 5</td><td>Tolera limits cold bendin Inclue that of high freque induction</td></r<></r54a </r53a 	- 25 20 15	20 10 5 5	Tolera limits cold bendin Inclue that of high freque induction
	Nominal dia. Bending radius	R					Stand range defin
b. Copper pipe				R52A 2A <r53a 3A<r54a 4A<r< td=""><td>- 30 25 20</td><td>20 15 10 10</td><td>Toler limit: cold bendi inclu that high frequ induc heat bendi</td></r<></r54a </r53a 	- 30 25 20	20 15 10 10	Toler limit: cold bendi inclu that high frequ induc heat bendi
							Stand range defin
c. Al-brass & CuNi pipe				R52A 2A <r53a 3A<r54a 4A<r< td=""><td>25 25 20 15</td><td></td><td>Toler limit cold bendi inclu that frequ induc heati bendi Stand</td></r<></r54a </r53a 	25 25 20 15		Toler limit cold bendi inclu that frequ induc heati bendi Stand
Contract	3. SWELL & WRINKLE						range defin
Section a.	Amount of swell	E DI		1			Toler
All pipe materials	Amount of swell distortion Amount of wrinkle distortion	h.			$\int \int \frac{1}{100} \mathbf{A}$		defin

FIG. A2.4 Piping

livision (C. PIPE HANGERS						G
Section	I. U-BOLT				OUALITY S	STANDARDS	
Sub-section	Item		Figure	Standard Range		nonce Its	Remarks
					unit	: ጠጠ	
a. Height difference between ends of U-bolt	Diameter of u-bolt Difference between bolt ends	d 0		₹4⁄5	not de	efined	
b. Pitch of U-bolt	Difference between required and actual location	o		±2	not di	afined	
c. Clearance between pipe & U-bolt or flat steel band	Clearance between top of pipe & hanger Clearance between bottom of pipe & hanger	a b		2153	not di	r	pplied 1 necessar part onl
	Clearance between side of pipe & hanger	ი ზ. ი,					
d. Thread extension from nut for U-bolt or flat steel band	Length of thread protusion beyond nut Diameter of bolt	a		0~5 ĭhreads		efined	
Section	2. FLAT STEEL BAND)					
a. Hanger height	Required height of hanger Dimensional variation	h đ	+ h+d	-2~0	not d	efined	
b. Pitch of bolt holes	Required pitch between bolt holes Dimensional variation	l d		±2	not d	eftned	
Section	3. DISTANCE BETWEE	EN PI	PE HANGERS				
				Pipe nominal diameter	Maximun hanger spacing	Pipe nominal diameter	Maxim hange spaci
				10	1.4 m	125	4.5
				15	1.6 m	150	5.0
				20	1.8 m	200	5.0
				25	2.1 m	250	5.5
				32	2.4 m	300	6.0
				40	2.6 m	350	6.0
				50	2.8 m	400	6.0
				1			
				65 80	3.2 m 3.5 m	500 600	7.0

FIG. A2.5 Piping

vision	E. REACH RODS		• • • • • • • • • • • • • • • • • • •	1	SHIPBUILD JALITY STANDARD	ING
Section	I. MANUFACTURING O	FRE	ACH ROD	UX	T	
Sub-section	Item		Figure	Standard Range	Tolerance Limits	Remark
					unit: mm	
a. Clearance between reach	Diameter of reach rod	D		D≥25 0.5≤₀≤1.5	not defined	
rod and bearing	Clearance between reach rod & bearing	٩	لياني المريحية. معرباهــــــــــــــــــــــــــــــــــــ	D≥32 0.5≤₀≤2.0	not defined	
b. Straightness of spindle (per 5 m)	Deflection of rod (per 5 m length)	o		≤10	not defined	
c. Clearance between reach rod and joint plece	Clearance between reach rod and joint piece	a		0.25051.0	not defined	·,
Section	2. FITTING OF REAC	H RO	D			
a. Spindle end spacing &	Spindle end spacing	٥		\$10	not defined	
spacing a free end spacing of taper pin	Free end spacing of taper pin	ь	ь Б	55658	not defined	
b. Straightness of reach rod (per 5 m)	Deflection of rod (per 5 m length)	٥		\$10	not defined	
C. Misalignment between valve spindle and reach rod	Misalignment distance	a		≤10	not defined	
d. Fitting angle of deck stand	Angle deviation from vertical	a*		51*	not defined	
e. Devlation of reach rod from perpen-	Angle deviation from normal	۵.		≤۱۰	not defined	

FIG. A2.6 Piping

Section	F. BELLMOUTHS		SHIPBUILDING OUALITY STANDARDS			
Sub-section	Item	Figure	Nominal Diameter (mm)	Standard Range (mm)	Tolerance Limits (mm)	Remark
	Height of l bellmouth above bottom of tonk Height tolerances d		80 100 125 150 200	l = 5 l = 20 l = 20 l = 25 l = 35		
Section	2. B-TYPE BELLMOUTH			L	·	
	Height of l bellmouth above bottom of tank Height tolerances d		250 300 350 400 450 500 550	l = 50 l = 50 l = 80 l = 100 l = 100 l = 120		
Section	3. C-TYPE BELLMOUTH		-	•		
	Height of l bellmouth above bottom of tank		40 50 65 80 100 125 150 200	L = 15 L = 15 L = 20 L = 25 L = 35 L = 40 L = 45 L = 65		

∰ F 2016 – 00

FIG. A2.7 Piping

Section I. HATCH COVER (SINGLE PULL TYPE)					SHIPBUILDING QUALITY STANDARDS		
Sub-section	Item		Flgure	Standard Range (mm)	Tolerance Limits (mm)	Remarks	
1. Dimension of hatch cover 2. Deflection of side end and top plate	Length (1 panel) Breath Height of hatch cover Difference between diagonals (1 hatch) Difference between diagonals (1 panel) Deflection of side plate in the vertical direction Deflection of end plate in the vertical direction Bend of side plate in the transverse direction	0 <u>-</u>		<pre> ±5 ±3 ±3 ±3 ±3 ≤5 ≤4 ±3 ±3 ±3 ±3 ±3 ±3 ±4 ≤3 </pre>	Not Defined Not Defined Not Defined Not Defined Not Defined Not Defined Not Defined Not Defined Not Defined	 and 2 indicate acceptable tolerance for various support conditions shown below: Condition where each cover is ranged without closely tightening Condition where each cover is range and tightened l= designed dimensit L,= actual dimensit *indicates clearance between under- surface of cover and surface toble when putting on the surface table 	
3. Dimension of wheel after installing	Dimension of balancing wheel after installing Height of balancing wheel Dimension of wheel after installing Height of wheel Plitch of installed wheel	$\begin{bmatrix} \delta_{11} \\ \delta_{12} \\ \delta_{13} \\ \delta_{14} \\ \delta_{15} \end{bmatrix}$		+2 +2 +2 +2 +2 +2	±3 ±3 ±3 ±3 ±4		

FIG. A2.8 Hull Outfitting

Division I-A WATER TIGHT STEEL HATCH COVER Section I. HATCH COVER (SINGLE PULL TYPE)				SHIPBUILDING QUALITY STANDARDS		
Sub-section	Item		Figure	Standard Range (mm)	Tolerance Limits (mm)	Remarks
4. Intermediate hinge and water tight- ness	gutter Breath of packing gutter Deviation between compression bar and packing	δι6 δι8 δι9 δ ₂₀ δ		±1 ±1 ±5 ±3	+2 +2 +2 +2 +2	<pre>t=thickness of compression bar Compressed depth of packing surrounding hatch cover to be in accordance with this item. • not defined</pre>
	Deviation between top plates Deviation between side plates	ଜୁ ବା ଜୁ ବା ଜୁ ₂ ବୁ	$k \rightarrow \delta_{19}$	≤2 ≤2 ±3	≤4 ≤4 -5-+10	
5. Installing position of snag for quick acting cleat	Longitudinal deviation Vertical deviation	δ ₂₄ δ ₂₅		±4 ±4	±6 ±6	
6. Clearance between hotch cover and hatch cooming	Touchplece type Directly of touched type Rest pad type	ర్ ₂₆ ర ₂₇ ర ₂₈		≤1 ≤3 ≤1	\$2 \$5 \$2	Refer to note
Section	Note Every touchpiece of touch with end and cover or rest arm of For type B, end and cover to be in touch top plate at least of meters. 2. HATCH COVER	ginden of hotch ich cover. ginden of hotch h the coaming iosition in any 3				
i. Dimension of hotch coaming	*Length	δ ₁ δ ₂		±5 ±5 ≤10	±10 ±10 ≤15	 to be in accordance with hull specificatio l=designed dimensional L,=actual dimensional

FIG. A2.9 Hull Outfitting

lvision	I-A WATER TIGHT ST	EEL +	ATCH COVER			HIPBUILDING STANDARDS
Section	2. HATCH COAMINGS	(SIN	GLE PULL TYPE)		UUALITT :	STANUARUS
Sub-section	Item		Flgure	Standard Range (mm)	Tolerance Limits (mm)	Remorks
2.	* End coaming	бз	_	±3	±5	• to be in
Deflection of horizontal		δ₄	<u>/ 1+611</u> € /	±5	±8	accordonce with hull specification
stiffener (installing position of compression bar)	* Deflection in any one meter (at end			/ ±2	±3	
3.	Installing position	δc	////////Xe.	±3	±5	t= thickness of
Installing dimension of compression	Longitudinal deviation	δ7	1.6. 6. A.	±3	±8	compression bar
bar	Transverse deviation	δ ₈		≤3	±5	
	Deviation from center line of cover packing	δ ₉	Ω	≤5	±ż	
4. Installing		δ ₁₀		±3	±3	
dimension of guide rail and	Installing position	δ ₁₁	κ	±3	±3	
romp	of ramp Deviation of ramp from vertical line	δ ₁₂	u l	±3	±3	
Section	3. HATCH COAMING		IDE ROLLING TYPE)		I	1
1. Dimension of hatch cover	Length	^δ		±5	Not Defined	① and ② indicate acceptable tolerant for various support
	Breadth (1 hotch)	δ <u>,</u> Ο		±5	Not Defined	conditions shown below: (D: condition when
	Breadth (1 panel)	δ ₃	i A	±4	Not Defined	each cover is ranged without closely tightentr
	Height of cover	ō,	a de la transferra	±3	Not Defined	2: condition where each cover is rang ond tightened
	Difference between diagonals (1 panel)		1.00	≤5	Not Defined	{= designed dimens
	Difference between diagonals († panel)	L3-L4		≤4	Not Defined	L ₁ = actual dimensi
2. Deflection of side, end and	Deflection of side plote in the vertical direction	δ6		±3	Not Defined	 indicates cleara between under surf of hatch cover and suface table, when
top plate	Deflection of end plate in the vertical direction	δ7		±3	Not Defined	putting on the surface table.
	Bend of side plate in the transverse direction	δ ₈		±3	Not Defined	
	Bend of end plate in the transverse direction	δ9		±3	Not Defined	
	Deformation of top plote	δ ₁₀		±4	Not Defined	
	*Flatness of lower surface of hatch			≤3	Not Defined	

FIG. A2.10 Hull Outfitting

Ivision	I-A WATER TIGHT ST					IPBUILDING STANDARDS
Sub-section	3. HATCH COVER (S: Item		Figure	Standard Range (mm)	Tolerance Limits (mm)	Remarks
3. Installing	Span (between center lines)	δ _{1 1}		±2 ±2	±3 ±3	
dimension of wheel	Installing height	δ ₁₂		±2	±3	
4. Intermediate hinge and	Installing pitch Height from base line to packing	613 6.0 615		±1 ±1	±2 ±2	t=thickness of compression bor
watertight construction	gutter Breath of packing gutter	ō, چ	τ=δ., τ=δ.,	±I	±2	Compressed depth of packing, surrounding hate
	Deviation between compression bar and packing	ାର,,ତା		≤5	±½	cover to be in accordance with this item.
	Compressed depth of parking	6.0		≤3	•	■ not defined
	Deviation between top plates	٥ ,,0	τ+6,7	±2	54	
	Deviation between end plates	ó₂₀		±3	≤4	
	Clearance between hatch covers	δ ₂₁	Jet to, SECT A-A	±3	-5-+10	
5. Installing	Longitudinal deviation	\$22	LEF m	±4	±6	-
position of snag for quick acting cleat	Ventical deviation	δ ₂₃		±4	±6	
6. Clearance	Touch piece type	δ24		1 ک	٤2	Refer to note
between hatch cover and hatch coaming	Directly touched Type	δ ₂₅		≤3	≤5	
hatch coaming	Rest pad type	ç 26		≤ I	s2	
	Note Evevy touchpiece of touch with end and cover or rest arm o	stde	girder of hatch			
	For type B, end and side girder of hatch cover to be in touch with the coaming top plate at least one posisition in any 3 meters.					
SECTION	4. HATCH COAMIN	G (S]	DE ROLLING TYPE)			
1. Dimension of hotch coaming	*Length	δ ₁	ι+δ,	±5	±10	<pre>* to be in accordance with hull specification</pre>
	*Difference between	n IL,-L		±5 ≤10	±10 ≤15	l≃designed dimens
	diagonals		• 6			Li=actual dimens

FIG. A2.11 Hull Outfitting

lvision	I-A WATER TIGHT ST				SI DHALTTY	HIPBUILDING STANDARDS
Section	4. HATCH COAMINGS	(SID	E ROLLING TYPE)			
Sub-section	İtem		Figure	Standard Range (mm)	Tolerance Limits (mm)	Remarks
2.	+ End coaming	ნკ		±3	±5	• to be in accordance with
Deflection of horizontal		r.	100 TAT RI			hull specification.
stiffener lat installing	 Side coaming 	δ ₄		±5	±8	
position of compression bar)	 Deflection in any one meter (at end and side coaming 	6 5	the for the second seco	±2	±3	l= Design dimensi
3. Installing	Installing position	б _б		±3	±5	t=thickness of
dimension of compression	Longitudinal and	б 7		±3	±5	compression bar
bor	transverse deviation Deviation from	<u>م</u>	J	±5	. T	
	center line of cover packing	б 8			±į	
4, Installing	Installing position	δg		±3	±5	
dimension of rail	Level of rall top	δ ₁₀		±3	±5	
			t (from t) &			
5. Position of	Deviation between wheel center and	δ _{ι ι}		±3	±5	
opening hole of jack	jack center					
	Deviation between rath and flap	δ ₁₂	oil Jack	±ł	±2	
Section	5. HATCH COVER (PONT	OON TYPE FOR CONTAI	NER SHIP)		
1. Dimension of	Length	δţ		±5	•	① and ② Indicate acceptable toleran
hatch cover	Breadth	ర్		±5	•	for various suppor conditions shown
	Height of cover	63		±3	•	follows:
	Difference between diagonals	L,-L2		≤5	•	① : condition putting together, nontight:
2. Deflection of	Deflection of side plate in the	δ4	- The	±3	•	2 : closed condit
side, end and top plate	direction of up and down		5-4-1-68			l= Design dimensi
	Deflection of end	L.		±3	•	L,= actual dimens
	plate in the direction of	65	1+5. 1+0.	-		to be measured by condition 2 at
	up and down	_		+7		container mount of cover or pedestal
	Bend of side plate in the direction of transverse	б б		±3		* not defined
	Bend of end plate In the direction of	δ7		±3	•	
	transverse					
	Deformation of top plate	ó 8		±4	•	
1	Flatness of under	1		≤3		

FIG. A2.12 Hull Outfitting

Section 5. H	I-A WATER TIGHT ST				SH DUALITY S	HIPBUILDING STANDARDS
Sub-section	Item		Figure	Standard Range (mm)	Tolerance Limits (mm)	Remarks
3. Woter tightness	Height from base line to packing gutter Breath of packing gutter	δ9 δ10 δ11		± ± ±	±2 ±2 ±2	
4. Clearance between hatch cover and hatch cooming	Touch place type Directly touched type Rest pad type Note Evevy touchplace of touch with and and cover or rest arm o For type B, and and cover to be in touch	side f hot side h wit	girder of hatch ch cover. girder of hatch h the coaming	≤1 ≤3 ≤1	≤2 ≤5 ≤2	Refer to note
Section	3 meters. 6. HATCH COAMING	G (PO	NTOON TYPE FOR CONT	AINER SHIF	 '}	
l. Dimension of hatch cover	 Length Breadth Difference between diagonals 	ర _। ర్న		±5 ±5 ±5 ≤5	±10 ±10 ≤15	<pre>* to be in accordance with hull specificat</pre>
2. Deflection of horizontal stiffner (at installing position of compression bar)	 End coaming Side coaming Deflection in any one meter (at end and side cooming) 	ర్యా ర ₄ ర్యా	1+5. 57 57 54 54	±3 ±5 ±2	±5 ±8 ±3	
3. Installing	•Installing position	6		±3 ±3	±5 ±5	t=thickness of compression bar

FIG. A2.13 Hull Outfitting

Section	I-A WATER TIGHT STE					HIPBUILDING STANDARDS
Sub-section	Item		Figure	Standard Range (mm)	Tolerance Limits (mm)	Remarks
l. Dimension of hatch cover	Length (1 panel) Breath Height of hatch cover Difference between diagonals (1 hatch) Difference between	Ó		+5 +3 +3 +3 +3 <5 <5	Not Defined	 and O indicate acceptable tolerand for various support conditions shown below: O: condition wher each cover is ranged without closely tightening
2. Deflection of side end and top plate	diagonals (1 panel) Deflection of side plate in the vertical direction	ó 5		±3		2: condition where each cover is range and tightened L= designed dimensi
	Deflection of end plate in the vertical direction	δ ₆		±3		L.= octual dimensi •indicates clearan
	Bend of side plate in the transverse direction	δ ₇		±3		between under- surface of cover and surface table when putting on
	Bend of end plate in the direction of transverse	δ ₈	<u>6,</u> <u>6,</u> <u>6,</u> <u>6,</u>	±3		the surface table
	Deformation of top plate	δ ₉	5. 1	±4		
	*Flatness of tranverse under surface of hatch cover (1 panel)			≤3	v	
3. Installing dimension of	Span (between center lines)	δ ₁₀		12	±3	
wheel	Installing height Installing pitch	δι ι δ ₁₂		±2 ±2	±3 ±4	
4. Intermediate hinge and	Height from base line to packing gutter	δ ₁₃ δ ₁₄	2	± ±	±2 ±2	t=thickness of compression bar
water thight- ness	Breath of packing gutter	ð ₁₅		±I	±2	Compressed depth of pocking surrounding hatch cover to be in
	Deviation between compression bar and packing	δ ₁₆	$\left \left(+ \delta_{13} \right) \right + \left \left(+ \delta_{13} \right) \right $	±5	± ¹ 2	accordance with this item.
	Compressed depth of packing	ర్తి		±2	•	 not defined
	Deviation between top plates Deviation between	ల_చ రాల	→→ →→	52 52	≤4 ≤4	
	side plates Clearance between hatch covers	~, • ర్హిలి		±3	-5-+10	

FIG. A2.14 Hull Outfitting

Section	I-A WATER TIGHT ST					HIPBUILDING STANDARDS
Sub-section	Item		Figure	Standard Range (mm)	Tolerance Limits (mm)	Remarks
5. Installing position of snag for quick acting cleat	deviation	δ ₂₁ δ ₂₂	€22 6 222	±4 ±4	±6 ±6	
6, Clearance between hatch cover and hotch cooming	Directly of touched type	δ ₂₃ δ ₂₄ δ ₂₅		≤1 ≤3 ≤1	52 55 52	Refer to note
· · · · · · · · · · · · · · · · · · ·	Note Every touchplece of touch with end end a cover or rest arm of For type B, end and cover to be in touch top plate at least o 3 meters.	ind s hat side wit one p	ide girder of hatch ch cover. girder of hatch h the coaming osisition in any			
7. Installing dimension of intermediate and main hinge	baseline of hatch cover (longitudinal and veritcal direction)	δ ₂₇		±2 ±2	±3 ±3	
8. Installing dimension of intermediate and main hinge	Deviation between eye plote for main cylinder and base line of hatch cover	δ ₂₈		±2	±3	
Section	2. HATCH COVER (FOLD	ING TYPE)	۱ ۲	L	L
l. Dimension of hatch coaming	*Length *Breadth *Difference between dłogonals	δ δ2 L-L:		±5 ±5 ≤10	±10 ±10 ≤15	To be in accordance with hull specification l=designed dimension L,=actual dimension

FIG. A2.15 Hull Outfitting

lvision	I-A WATER TIGHT ST				SH QUALITY S	HIPBUILDING STANDARDS
Section Sub-section	2. HATCH COAMINGS	IFOL	Figure	Standard Range (mm)	Tolerance Limits (mm)	Remarks
2.	• End coaming	δ3		±3	15	* to be in
Deflection of horizontal	• Side cooming	δ ₄	/1+8m / *	± 5	±8	accordance with hull specification
stiffener (installing position of compression bar)	 Deflection in any one meter (at end and side coaming 		the former	±2	±3	L= designed dimensio
3.	Installing position	δ ₆	AND A Sta.	±3	±5	t= thickness of
Installing dimension	Longitudinal deviation	δ7		±3	±8	compression bar
of compression bar	Transverse deviation	δ ₈		±3	±5	
	Deviation from center line of cover packing	δ9	Π	±5	± 1/2	
4. Installing	Installing position of rail	δ10		±3	±5	
dimension of guide rail	Deviation of ramp from vertical line	δ		±3	±5	
tvision Section	I I-B ENTRANCE DOOR I. WATER TIGHT S				1	L
<u>į</u> .	Breadth	δı		±2	±4	l= designed dimensi
Door	Height	δ2		±2	±4	δ ₃ : distance between
	Distortion	δ3	- ++++++++++++++++++++++++++++++++++++	±2	±3	middle points of diagonals
		δ4		±1	±3	
	Straightness	· ·				
	Worp	δ ₅		±I	±3	
2. Door coaming	Breadth	δ ₆		±2	±4	δg: distance between middle points
	Height	δ7		±2	± 4	of diagonals
	Height of sill	δ8	++++++++++++++++++++++++++++++++++++++	0~15	0~30	
	Distortion	δ9		±2	±4	
	Stratghtness	δ10	Beck	±I	±3	
	Warp	δ	Steel wall	±I	±3	
3. Part of cut	Breadth	δ ₁₂	<u> </u>	±4	±7	
steel wall	Hetght	δ13		±4	±7	
	Height of sill	δ14		0~15	-10~30	
			11+92	1	1	1

FIG. A2.16 Hull Outfitting

Section 2. W	I-B ENTRANCE DOOR					HIPBUILDING STANDARDS
Sub-section	Item		Figure	Standard Range (mm)	Toleronce Limits (mm)	Remorks
l. Hotch cover	Breadth Length Distortion Straightness Deformation (in any one meter)	δ ₁ δ ₂ δ ₃ δ ₄ δ ₅		±3 ±3 ±2 ±1 ±1	15 15 13 13 13 13	δ ₃ : distance betwee middle points of diagonals
2. Hotch coaming	Breadth Length Height Distortion Straightness	δ ₆ δ ₇ δ ₈ δ ₉ δ ₁₀		±2 ±2 0 ~6 ±2 ±1	15 15 0~20 13 13	δ,: distance betwee middle points of diagonals
3. Port of cut deck plote (penetration type) 4. Port of cut deck plate	Breadth Length Breadth Length	δ ₁₁ δ ₁₂ δ ₁₁	<u> </u>	+2 +2 -3~2 -3~2	±3 ±3 -5~3 -5~3	
(non- penetration type) 5. Water tightness	Touch between gasket and coaming	δ ₁₂		B≥½		To be applied for steel water tight door and water ti
						steel small hatch (Water tight door B:Breadth of chalk clung on the gasket after tight ing test. The test is to be corried o with thrusting chi to the middle of t wedges. (Water tight sma hatch) B:Breadth of chalk clung on the gasket after tight ing test. The test is to be corried o with thrusting chi to the middle of t

FIG. A2.17 Hull Outfitting

	I. HULL	OUTFITTIN	G				
C	lvision	I-C VENTILATOR AN	S SKI	(LIGHT			IPBUILDING
	Section	1. ANOTHER WATER 1	IGHT	STEEL HATCH			STANDARDS
	Sub-section	Item		Figure	Standord Range (mm)	Tolerance Limits (mm)	Remorks
	l. Waten tightness	* Contact between gasket and coaming			B≥ż		Ventilation hole with wall Wall louver Goose neck ventilator Mushroom ventilator
	Section	I. SKYLIGHT					
	l. Water tightness	Contact between gasket and coaming			B≥ż		
()ivision	I-D CARGO LOADING		RATUS			
T	Section	I. WELDING FABRI	CATE	D BOOM			
	I. Derrick boom	Length Bending Diameter Permissible out of roundness of cylindrical shell at installing position of base assemblies	δ ₁ δ ₂ δ ₃ D ₁ -D ₁		±7 ±5 0- <u>₽</u> ≤1	±10 ±10 0- <u>20</u> 52	d: designed dimension of derrick boom at measuring position D _i = max diameter D _i = min. diameter
	2. Derrick boom and assemblies	Distortion between assemblies on base and assemblies on top	ర్	Guy Guy Heel Piece Main ayeplate	≤1	\$2	

FIG. A2.18 Hull Outfitting

Sub-section Item Figure Standard Range (mm) Tolerance Limits (mm) Remarks 1. 20' Container fitting Length 51 33 24 D and D indicate acceptable tolerance for various support conditions shown follows: 20' Container fitting Breadth 53 44 D and D indicate acceptable tolerance for various support conditions shown follows: Difference of height at cross section of diagonals 54 2 4 follows: Difference between diagonals 1+51 5 8 2: closed condition putting together, nontight: 2. Length 53 13 15 L,= actual dimension 2. 40' Container fitting Breadth 54 12 13 15 2. 40' Container fitting 54 54 12 13 15 15	Section 1. CC	I-E CONTAINER LASH		DEVICES	-	SH QUALITY S	HIPBUILDING STANDARDS
1. Length 5, 5, 2, 1, 0, 0, 0, 1,		· · · · · · · · · · · · · · · · · · ·		Figure	Ronge	Limits	Remorks
Difference of height at cross section of diagonals Image: condition shown follows: Image: condition shown follows: Difference between diagonals Image: condition shown follows: Image: condition putting together. nontight: Image: condition putting together. nontight: 2. Length Image: condition shown follows: Image: condition putting together. nontight: Image: condition putting together. nontight: 2. Length Image: condition putting together. nontight: Image: condition putting together. nontight: 2. Length Image: condition putting together. nontight: Image: condition putting together. nontight: 2. Length Image: condition putting together. nontight: Image: condition putting together. nontight: 2. Length Image: condition putting together. nontight: Image: condition putting together. nontight: 2. Length Image: condition putting together. nontight: Image: condition putting together. nontight: 3. Image: condition putting together. nontight: Image: condition putting together. nontight: Image: condition putting together. nontight: 3. Image: condition putting together. nontight: Image: condition putting together. nontight: Image: condition putting together. nontight: 3. Length Image: cond				<i>1</i> 5			
Difference of diagonals Difference of diagonals Difference between diagonals D		Breadth	ه, ٥	→ →	±2	±3	for various support
2. 2. 40' Container fitting 3. Clearance between cell guide and Clearance between container diagonals Length 5 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1		Difference of height at cross section of	00		2	4	D: condition putting together,
diagonals kt.i I = Specified dimension 2. 40' Container fitting Length Breadth Difference of height at cross section of diagonals 6, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,		-	6	ι+δ,	5	8	-
2. 40' Container fitting Breadth Difference of height at cross section of diagonals Difference between diagonals Length S. Clearance between container Length Breadth Container Length Breadth Cover or pedestal Cover or pe				F			l= Specified
40 Container Breadth bifference of height at cross section of diagonals 5 8 Difference between diagonals Difference between diagonals 0 1 5 8 3. Clearance between cell guide and container Length 6.0 5 8 1 3. Clearance container Length 6.0 5 8 1 1 3. Clearance container Breadth 6.0 5 8 1 1 6.0 5 6 5 8 1 1 1 1 6.0 5 6 5 8 1 </td <td>2.</td> <td></td> <td>δ</td> <td></td> <td>±3</td> <td>±5</td> <td></td>	2.		δ		±3	±5	
$\begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		-			±2	±3	to be measured by
$\begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $			00	*0			container mount on cover or pedestal.
$\begin{array}{c c} dtagonals \\ \hline \\ dtagonals \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		height at cross section of					
Člearance between between cell guide and Breadth $\delta_7 + \delta_6$ $\delta_8 + \delta_6$ $\delta_8 + \delta_6$ $\delta_8 + \delta_6$					5	8	
	Clearance	-	1	1			
	cell guide and	Breadth	0,+0		-	±/	
				<u>ό</u> ,			

FIG. A2.19 Hull Outfitting

Dimension of deck B H D 2. Distortion of deck D Cleoronce b between decks d D b cleoronce b b b d d d d d d d d d d d d d d d d d	HOISTABLE DECK (LI Item ength Breadth delight Difference between diagonals Deflection of deck Distortion of deck end from deck level Difference in level between movable decks Difference in level between movable	δ ₁ δ2 δ3 δ5-δ δ6 δ7 δ8 δ20 δ9	Figure Figure	Standard Range (mm) ±5 ±5 ±3 ±8 +5 -0 +5 -2	Toterance Limits (mm) ±8 ±5 ±10 +10 -5 +10 -5 5 5	57.68: distortion of de
I. Dimension of deck 2. Distortion of deck 3. Cleoronce between decks d d d d c c c c c c c c c c c c c c c	Length Breadth Height Difference between diagonals Deflection of deck Distortion of deck Deviation of deck end from deck level Difference in level between movable deck and fixed	ర్ ర్ ర్ - ర్ ర్ ర్ ర్ ర్ ర్ సి 8 ర్ 20 ర్ ల్ ల్ ల్ ల్ ల్ ల్ ల్ ల్ ల్ ల్ ల్ ల్ ల్	Lite Contraction of the second	Ronge (mm) 15 15 15 13 18 +5 -0 +5	Limits (mm) 18 15 10 +10 -5 +10 -5 5	l=destgned dimension $\delta_4, \delta_5:$ actual dimensi $\delta_7, \delta_8:$ distortion of de to be kept desig supporting condition. l=designed
Dimension of deck B H D D Distortion of deck D Clearonce between decks d D b d d d d d d d d d d d d d d d d d	Breadth Height Difference between diagonals Deflection of deck Distortion of deck Deviation of deck end from deck level Difference in level between movable deck and fixed	ర్ ర్ ర్ - ర్ ర్ ర్ ర్ ర్ ర్ సి 8 ర్ 20 ర్ ల్ ల్ ల్ ల్ ల్ ల్ ల్ ల్ ల్ ల్ ల్ ల్ ల్		±5 ±3 ±8 +5 -0 +5	18 15 10 -5 +10 -5 5 5	dimension $\delta_4, \delta_5:$ actual dimensi $\delta_7, \delta_8:$ distortion of de to be kept desig supporting condition. I=designed
2. Distortion of deck D 3. Clearance between decks d d d d	Deflection of deck Distortion of deck Deviation of deck and from deck level Difference in level between movable decks Difference in level between movable deck and fixed	ర్ ₇ ర ₈ ర ₂₀		+5	-5 +10 -5 5	distortion of de to be kept desig supporting condition. !=designed
Clearance b between decks d b b d d d c C	between movable decks Difference in level between movable deck and fixed				10	
C		δ ₁₁ δ ₁₂	Movable	±5	10 ±8 ±10	δ_9 , $\delta_{ 0}$, $\delta_{ 1}$, $\delta_{ 2}$: difference of level and cleare between decks to kept designed supporting and guided position.
Height between decks m	novable deck and	δ ₁₃ δ ₁₄	MOVABLE FIXED L+6. MOVABLE L+6.	+20 -0 +20 -0		<pre>l=designed dimension •:Planned dimens means the clear height to be kep in the loading conditon.</pre>
Guidenail g	Deviation of guiderail from vertical line	δ ₁₅	De deck spans	5		δ ₁ 5: devtation fr vertical li between one dec spans.
Clearance 9 between pillar 7 and movable deck 7. C	Deviation of guiderall from ventical line do Clearance between guiderall and guide	δ ₁₆ δ ₁₇ δ ₁₈	guiderall guide piece i+on pillar		+ 10 ± 10 +8 -0	l≃designed dimension

FIG. A2.20 Hull Outfitting

livision	I-F MOVABLE DECK, RAM	IP WAY, ETC.			HIPBUILDING STANDARDS
Section 2	STERN RAMP (INCLUDING	RAMP DOOR)			
Sub-section	Item	Ftgure	Standard Ronge (mm)	Tolerance Limits (mm)	Remarks
l. Dimension of ramp	Breadth (lower part) $\delta_{ }$ Breadth (upper part) $\delta_{ }$	1 N -	±5 ±5	±8 ±8	l=destgned dimension
	Length (SEC I)	SIDE SIDE	±5	±8	CLI : center of moth hinges
	Length (SEC II) 5		±5	±8	CL2 : center of Interchange
	Length (TOTAL)		±IO	±16	CL3 : center of flap hinges
2. Position of hinges	Distonce between δ_i main hinges	door 1+6.		±5	CL4 : means the
	Distance between δ the center of hinges	7 <u>CL1</u>		±8	perpenndicul to CLI.
	Distance between 5		K	±4	L+δ₃= ① +Ø
3.	Inter-hinge δ_{i}			±4 ±5	L+ð3= 3 + 4 + 5
Dimension of ramp door	distance between compression bars Transverse distance O	N 10 11-5		±5	δ4,65: to be measured after erection
	between compression bars				012.013: actual distance
	Difference between 5, diagonal distances of compression bar			±8	
4. Distortion of	Longitudinal 5 distortion	4 6.		±5	
r amp	Transverse distortion	5		±5	
		5., 6.			
					δ 4,δ 5: Distortion of t plate on girder
5. Clearance eTc. In way of Tightening part	Deviation of the position of compression bar from the centerline of packing	6 cleat		±5	
	Clearance between 5 The packing glove and the top plate of ramp door			5	

FIG. A2.21 Hull Outfitting

🕼 F 2016 – 00

Section 3	I-F MOVABLE DECK, RAMP MIDSHIP RAMP (INCLUDIN		-	SI OUALITY	HIPBUILDING STANDARDS
Sub-section	Item	Figure	Standard Range (mm)	Toleronce Limits (mm)	Remorks
1. Dimension of namp 2. Dimension and position of	-		15 15 15 15	18 18 18 18 18 15	l=designed dimension CLI : center of main hinges CL2 : center of flap hinges
hinges 3. Dimension of ramp door	Breadth of lifting eyes Longitudinal distance between compression bars Transverse distance between compression bars Difference between diagonal distances	CL2		±2 ±5 ±5 ±8	ό, ό φ: actual distance
4. Distortion of ramp	of compression bar Longitudinal distortion Transverse distortion δ ₁₂			±5 ±5	
		¢ ₁₂			διι,δι2: Distortion of f plate on girder
5. Clearance etc in way of tightening part	Deviation of the position of compression bar from the centerline of packing Cleorance between the packing glove and the top plate of ramp door		5m	±5 5	

FIG. A2.22 Hull Outfitting

	vision	I-F MOVABLE DECK.		WAY, ETC.			HIPBUILDING STANDARDS
T	Section 4	BULKHEAD DOOR/COAM		<u> </u>	Standard	Toleronce	
	Sub-section	Item		Figure	Ronge (mm)	Limits (mm)	Remorks
	l. Dimension of	Breadth	Q			±5	l≍destgned dimension
I	door	Helgth	δ.	cleat		±5	
		Depth	6 6	- ····		±3 ±3	F F F F F.
		Difference between diagonal distances	<u>م</u> م-م	A5.	× •	±8	δ5. δ6. δ11. δ12: actual dimension
	2. Position of fittings	Height of the center line of wheel	<u>ۍ</u>	to be		± 3	
		Position of cleat	δ.	No Po		±3	
		Position of stopping device	<u>م</u>	y wo		±5	
	3. Distortion of door	Distortion (transverse direc- tion)	δ.			±3	
		Distortion (vertical direction)	δ.			±3	
	4. Dimension of coaming	Breadth	ō.,			±5	l=designed dimension
		Height	ō.,			±5	δ ₁₇ ,δ ₁₈ δ ₂₀ -δ ₂₃ :
		Depth	<u>б.</u> б.		< Pub.	±3 ±3	actual dimension
		Difference between diagonal distances	δ <u>,</u> -δ,			±8	
	5. Position of rail	Distance from the bulkhead to the center of guideral	ō.,	000- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	9-65-	±3	
1	6. Distortion of cooming	Deflection (transverse direction	<u>,</u>	û		±3	
		Deflection (vertical direction)	۵. ,			±3	
		Distortion (iransverse direction				±3	
		Distortion (vertical direction)	δ			±3	
		Clearance between deck and back plate of door packing	б .			±3	l=designed dimension
		Gap between the corner of tight ba	5.			±3	

FIG. A2.23 Hull Outfitting

Section 1	II-A ACCOMMODATION		E		SH DUALITY S	HIPBUILDING STANDARDS
Sub-section	Item		Figure	Standard Range (mm)	Tolerance Limits (mm)	Remarks
I. Clearance between door and door frame	Between wooden door and door frame Between steel door and door frame	o,	Door frame	s2 s2	<3 <3	
Section 2	DIVISIONAL WALL	δι	, Deck	≤5	≤8	
Fitting of division wall			Beam Base Itne (drawing dimension)			
Section 3	CEILING	<u>L</u>	<u> </u>	1	1	1
l. Ceiling clear height	Short of ceiling clear height (clear height)	δ		\$10		To be defined b planned dimensi
Section 4	DETAIL OF DIVISION	AL P	ARTS	1		· · · · · · · · · · · · · · · · · · ·
I. Joint piece of woodwork	Relation between wooden parts and screw hole Deviation from marking line	α, δ ₁	o, Sleeper T T T T T T T T T T T T T T T T T T T	22.5 D 52	≥1.5 D ≤5	D= dia. of bolt or dia. of scre
			Working V			

🕼 F 2016 – 00

FIG. A2.24 Woodwork

	II. WOOD	DWORK					
D	lvision	II-A ACCOMMODATION				SH DUALITY S	
	Section 4	DETAIL OF DIVISIONA		RTS	Constant I		IANUARUS
	Sub-section	Item		Figure	Standord Konge (mm)	Tolerance Limits (mm)	Remarks
	2. Alignment of plywood joint	A joiner (plywood with the last coat of paint)	δ ₂		≤0.5	12	
		A joiner (To be veneered)	δ3		≤0.3	≤0.5	
		No joiner (To be veneered)	δ4			s0.3	
		A jotner with jotnt pieces (To be veneered)	δ ₅	V ⁶⁵	≤0.5	≤1	
	3. Clearance of plywood joint	Plywood with the last coat of paint	δ ₆	>	≤0.3	≤١	
		Without joint pleces (To be veneered)	δ ₇		≤0.3	≤0.5	
		With joint pleces (To be veneered)	δ ₈		1 ک	<u>\$2</u>	
	4. Penetrations of wooden wall	I Nead I Llearance and	δ ₉ α	A Plpe duct Screw Stl pl1 (thickness more than 1.0 mm)	52	£2.5 ≥25	
	5. Steel panel	Deviation between uppen and lower pieces	δ ₁₀		≤5	≤8	
		Alignment of joint	δ	<u>ih Steel</u> deck	≤0.5	≤1	
		Gap of joint	δ ₁₂		≤0.5	51	
				$\sum_{i=1}^{j_{i+1} < \delta_{i+2}}$		<u>}</u>	

€\$₽¢	F	201	6 ·	- (00
-------	---	-----	-----	-----	----

FIG. A2.25 Woodwork

lvision	II-A ACCOMMODATION				SI	HIPBUILDING
Section 5	DECK COVERING LEVE	L		OUALITY STANDARDS		
Sub-section	Item		Ftgure	Stondard Range (mm)	Toleronce Limits (mm)	Remarks
l. Deck composition	Flatness of deck composition	δ _ι			5≤	Depth of Ő _l in two meters.
2. Deck covering	Flatness of deck covering		Ditto		≤5	Ditto
l Ivision	II-B DECK COMPARTME	INT	· · · · · · · · · · · · · · · · · · ·			······
Section 1	ON DECK					
l. Deck planking	Gap between deck planking and steel deck	δ	Deck planking	\$7	<u> </u>	Distortion of steel deck is based on quality standard for hull. Deck planking is based o quality standard fo bare steel parts.
Section 2	IN HOLD				•	·
I. Clearance between sparring and cleat	Horizonial Longitudinal	01	Brell plotting	56 56	≤10 ≤10	
2. Location of cleat	Deviation of sparing from face	03	Shell plating Grame Shell plating Frame	10 ≤ a3 a3 ≤ 15	5 ≤ o3 o3 ≤ 20	Fitting accuracy of cleat is defin as installed. In case where it is impossible to com with the standord due to form of frames. Sparring to be divided as appropriate.
Section 3	THE COLD STORAGE S		s	1	L	I
I. Door	Air tightness of door				Not defined	To be checked by cho test. No measurable frost outside the co starage spaces under refrigerating test. case where it frosts blow air from the outside and check wi leakage of air with candle or a joss sti

FIG. A2.26 Woodwork

Sub-section 1.Reamen 2. Join	the center line	D, - D ₂ D ₂ - D ₃ d ₁ - d ₂ d ₃ - d ₄ d - D	Figure Figure	Standard Range (mm) 0.005 -0.015 >60%	Tolerance Limits (mm) \$0.01 \$0.02 \$0.01 \$0.02 \$0.01 \$0.02 \$0	Remarks Di:dia of bolt di:dia of hole
	reamer bolt hole Roundness Cylindrical Dimension of reamer bolt hole Roundness Cylindrical Interference of reamer bolt Facing surface area between rudder plate and rudder stock Deviation from the center line	$ D_2 - D_3 $ $ d_1 - d_2 $ $ d_2 - d_4 $	surface Rudder rRegner	-0.015	≤0.02 ≤0.01 ≤0.02	
2. Join	reamer bolt hole Roundness Cylindrical Interference of reamer bolt Facing surface area between rudder plate and rudder stock Deviation from the center line	1 d3~ d4 1	surface Rudder rRegner	-0.015	≤0.02	
2. Join	Facing surface area between rudder plate and rudder stock Deviation from the center line	d-D	surface Rudder rRegner	-0.015	>0	
2. Join	area between rudder plate and rudder stock Deviation from the center line			>60%		I
	the center line				•	*not defined
	of rudder and rudder stock after connection	δ _l	Goop C Rudder D ptete	≤0.3	≤0.5	Both longitudinal and transverse deviations are to comply with this standard
	Length of rudder plate and rudder stock after connection		δ ₂			
	Length of rudder stock	δ ₂		±3	•	
	Length of rudder plate	δ ₃	δ ₃	±4	•	
	Total Length	ნ ₂+ ნჳ		±5	•	
	Gop between rudder plate and rudder stock after connection	5 ₄		<0.03	•	After tightening of reamer bolt
3. Steeve of rudder stock	Interference for sleeve of rudder stock					■not defined
	(S U S)	d₃- d₄		$\frac{(5 - 10) d_3}{10,000}$	•	di:outside dia. of rudder stock
	(BC)	d₃- d₄		<u>(10-20)d</u> 10,000	3 .	d; outside dia. of sleeve
······································	le and gudgeon bush		l	<u> </u>	<u> </u>	<u> </u>
I. Pintle	Facing surface area between pintle and taper of rudder plate			>60%	•	•not defined
	Interference for pintle of rudder stock		Gudgeon Pudder plate			
	(SUS) (BC)	d1 - d2 d1 - d2		(<u>5-10) d</u> , 10,000 (<u>10-20) d</u> , 10,000	•	d::outside dia. of pintle d::inside dia. of sleeve
2. Gudgeon bushing	Interference of gudgeon bushing	d d3	Gudgeon- bush Pintle		-	Inot defined d₁:outside dia.

F R	2016	- 00
-----	------	------

vision IV-A Rui Section	dder 3. Stern frame				SH QUALITY S	IPBUILDING TANDARDS
Sub-section	Item		Figure	Standard Ronge (mm)	Tolerance Limits (mm)	Remorks
l. Gudgeon center line	Alignment of cen- terline for rudder carriers, upper & lower gudgeons after boring, or ofter cramming eccentric bushing	δ _I	Rudder carrier Dack Upper oudgeen Col	≤0.3	\$0.5	Both longituding and transverse deviations are to comply to the standard
Section	4. Rudder tiller				!!	
l. Rudder stock and	Interference of rudder stock and tiller		Rudder- tiller		>0	
tiller	Interference of taper key		Rudder eteck	0.005 ~0.015	>0	
2. Rudder stock and tiller	Facing surface area between rudder stock and tiller			>60%	•	•not defined
with Taper	Fastening clearance of taper key			0.005 ~0.015	>0	
Section	5. Rudder corrier	ond	stuffing box		1	
l Installation	Facing surface area of liner Gap between rudder carrier and liner		Distance piece Rudder corrier Rudder Rudder Jusping stock	>50% <0.05	•	not defined This standard is also aplied to that of stuffing box To be measured in the condition before tightention of up bolts
vision IV-B Ste	ering engine					
Section	I. Ram cylinder	туре	1			
l Reamer bolt	Interference	d-D		0.01	>0	d: dia. of bolt D: dia of hole
2 Installation of liner (Top liner Chock liner)	Clearance			<0.06	•	 not defined In the condition before tightenion of bolts
3 Level and torsion of rom cylinder	Level and torston			≤ <u>10</u> ≤ <u>100</u>	Within 75% of clearance of ram	

FIG. A2.28 Machinery

lvision	IV-B Steering engl	ne	<u></u>		SH QUALITY S	IPBUILDING
Section 1. Rom	T		Г	Standard	Tolerance	
Sub-section	Item		Figure	Ronge (mm)	Limits (mm)	Remarks
4 Alignment coupling	Inclination of the surface	T,-T2		\$0.07	•	In case of solid coupling
center of hydraulic pump after installation	Concentricity			≤0.05	•	To measure like this figure by means of dial guage, in case
			Dialguage 04			of solid coupling
Section 2. Rote	i ary vane type	· · · · · ·	l	<u> </u>	۱	·····
I Toper area between rudder stock and boss on steering engine	Facing surface area			260%	•	•not defined
2 Interference mark on nut ot the top of the rudder stock	Push up travel			0.6	•	Length of Indentation is ccording to the maker standard Pnot defined
3 Alignment of coupling center of hydraulic pump after installation	Inclination of the surface Concentricity	1 T T2		≤0.07 ≤0.05	•	In case of solid coupling to be measured by mean of dial guage See left sketch
l Ivision IV-C De			Dialguage 🚰	<u></u>		
······	allation of machine					
l Clearance between seat	A class			<0.06	<0.10	A class: deck crane and cargo gear
and machine	B class		l.	<0.10	<0.20	B class: pump
	C class			*	•	C class: miscellaneous winch and davit
						A B C class to be measured before tightenin
			-			*not defined

🕼 F 2016 – 00

FIG. A2.29 Machinery

vision IV-C De	ck machine	ne seat			SH QUALITY S	IPBUILDING STANDARDS
Sub-section	Item		Flgure	Standard Range (mm)	Tolerance Limits (mm)	Remarks
2 Alignment of coupling center	Inclination of the surface Concentricity	T,-T ; 		≤0.07 ≤0.05	•	In case of solid coupling To be measured b means of dial gauge See sketch
3 Alignment of shaft center		<u>IC-DI</u>		≤0.05	•	A class •not defined
ision IV-D Dec				· · · · · · · · · · · · · · · · · · ·	······································	
Section 1. 11 L Laying roll	Distance between center of the rails (one side type)		aveling type hopper	≤5	•	*not deflned
	Distance between center of the ratis (both side type)	-		\$10	•	*not defined
	Horizontal line of rail (for optional 10m)	16,1	40 Center of roll	≤5	•	Standard per meter
	Vertical line of rail (for optional 10m)	15,1		≤5	•	Standard per meter
	Slope of roll (for optional 10m)	١٥٫١	δ. Top of rati Base Ine Presusing at both ends of fore and oft.	< 1000	•	Standard per meter
	Plane of rail (for optional (Om)	15,1	6.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•	
	Inclination of rail	15,1	R.	<200	•	
	Difference of height between port and stbd	١٥,١	L S	≤8	•	To be measured at each 5m

FIG. A2.30 Machinery

-	IV. MACH	HINERY					
D	lvision	IV-D Deck chane				SH QUALITY S	
	Section 2. Fixe	d type					
	Sub-section	Item		Figure	Standard Range (mm)	Tolerance Limits (mm)	Remarks
	 Installation		15,1	δ,	≤0.4	•	Difference for
	of post	Difference of bolt hole on flange	16,1		\$0.6		Ulterence for diameter •not defined
	Division IV-E Si Section 1. Side		1		······································	I	I
	l Center of coupling		δ _l		50/1000	•	Universal coupling type *not defined
	2 Deformation of tube	Clearance between tube and blade	δ _l	b b Tube Blade	2 <u>D</u> 600	•	*noĭ defîned

FIG. A2.31 Machinery

A3. COATINGS

A3.1 Contents

Introduction	A3.2
General	Fig. A3.1
1. Type of vessel	Fig. A3.1
2. Tank coating area	Fig. A3.1
3. Type of cargo 4. Tank anodes	Fig. A3.1
	Fig. A3.1
5. Outfitting	Fig. A3.1
6. Paint to be used	Fig. A3.1
7. Dry film thickness	Fig. A3.1
8. Shop primer	Fig. A3.1
9. Holding coats	Fig. A3.1
10. Painting process	Fig. A3.1
Presurface Preparation Standards	Fig. A3.2
11. Free edge	Fig. A3.2
12. Spatter	Fig. A3.2
13. Undercut	Fig. A3.2
14. Surface damage	Fig. A3.2
15. Manual welding bead	Fig. A3.2
16. Automatic welding bead	Fig. A3.2
17. Overlap welding bead	Fig. A3.2
18. Welding arc strike	Fig. A3.2
19. Gas cut surface	Fig. A3.2
20. Lifting lugs	Fig. A3.2
21. Moisture	Fig. A3.2
22. Oil and grease contaminants	Fig. A3.2
23. Dust and nonvisual contaminants	Fig. A3.2
24. Chalk or slate pencil marks	Fig. A3.2
25. Marking paint	Fig. A3.2
Surface Preparation Standards	
26. Solvent cleaning	Fig. A3.3
27. Mechanical cleaning	Fig. A3.3
28. Abrasive blast cleaning and surface profile	Fig. A3.3
29. Water jetting	Fig. A3.3
30. Abrasives	Fig. A3.3
31. Repairs to shop primed surfaces	Fig. A3.3
Coating Standards	
32. Stripe coating tanks	Fig. A3.4
33. Overall coat	Fig. A3.4
Coating Repair Standards	
34. Sagging	Fig. A3.5
35. Spray dust	Fig. A3.5
36. Foreign matter	Fig. A3.5
37. Crater, pinholes and bubbles	Fig. A3.5
38. Blushing	Fig. A3.5
39. Mechanical damage	Fig. A3.5
40. Insufficient film thickness	Fig. A3.5
Film Thickness Measurement Standards	T Ig. A5.5
41. Film thickness measurement of tank plate	Fig. A3.6
 Film thickness measurement of tank longitudinal members Film thickness measurement of tank transverse members 	Fig. A3.6
	Fig. A3.6
Environmental Painting Standards	F : 40.7
44. Temperature	Fig. A3.7
45. Humidity	Fig. A3.7
46. Ventilation (Blasting)	Fig. A3.7
47. Ventilation (Painting)	Fig. A3.7
48. Erection of scaffolding	Fig. A3.7
49. Removal of scaffolding	Fig. A3.7
50. Illumination	Fig. A3.7
Inspection Standards	
51. Presurface preparation	Fig. A3.8
52. Surface preparation	Fig. A3.8
53. Stripe coating	Fig. A3.8
54. Film thickness	Fig. A3.8
55. Final inspection	Fig. A3.8
56. Temperature, humidity, and dew point	Fig. A3.8
57. Gas concentration of solvent	Fig. A3.8
58. Ventilation	Fig. A3.8
Explanations	Figs. A3.9–4

A3.2 Introduction

A3.2.1 This practice for coatings addresses those aspects of coating application inherent in achieving finished product quality that can be measured and warranted as meeting acceptable criteria. Because of the nature of coating systems, in which preparation and methodology directly affect finished quality, this practice contains information about processes and

application practices, as well as, pass/fail criteria of the end product. It should be acknowledged that measuring finished coating attributes cannot determine that good application practices were followed and, therefore, cannot be used as a sole means of warranting the finished quality of the coating.

No.	Item	Prerequisites	Remarks
1	Type of Vessel	Commercial and Military	
2	Tank Coating Area	No Limitation	
3	Type of cargo	Products identified in the specification section.	Refer to ship's specification
4	Tank anodes	In accordance with ship's specifications in Water Ballast Tanks and Slop Retention Tank.	Refer to ship's specification. Refer to Fig. A3.9 (Explanations).
5	Outfitting	In the case of steel, painting is similar to the surrounding area. Paint shall not be applied to woodwork, polished fittings, gaskets, packing, anodes, non-ferrous material, or other non- corrosive metals and any other surface or fittings and equipment where paint could obstruct their proper function.	
6	Paint to be used	As specified by owner. Coatings shall be lead free, chromate free, asbestos free, cadmium free and comply with applicable Federal, State and local Regulations	Refer to ship's specification
7	Dry film thickness	Refer to ship's specification and manufacturer's recommendations.	Refer to Fig. A3.9 (Explanations).
8	Sh op pri mer	After primary surface preparation, one (1) coat of inorganic zinc silicate type shop primer will be applied in accordance with the paint manufacturer's recommendation, for structural steel not coated with inorganic zinc silicate type shop primer builder shall blast to SSPC-SP 10 and apply first coat of specified system, subject to owner approval. Surface profile to comply with ship's specification.	
9	Holding coat	As determined by builder with consideration to paint manufacturer's recommendation.	
10	Painting Process	Block unit through completion.	Refer to Fig. A3.9 (Explanations).

FIG. A3.1 General

₩ F 2016 – 00

No.	Item	Process Standard	Judgment	Remarks
11	Free edge <u>In</u> <u>Immersion</u> <u>Service</u> <u>Areas To Be</u> Coated	 (1) Break 90 degree edges 1 mm minimum. (2) In general, rolled angle edges, bulb flats, etc. (including flat bars) are to be left untreated. 	Visual	
12	Spatter In Immersion Service Areas To Be Coated	Visual		
13	Undercut	Undercut to a depth exceeding 1.6mm and a width smaller than the depth is to be repaired by grinding. If a sharp edge exists with a crest exceeding 3mm grind until irregularity is less than 3mm.	Visual	Refer to Fig. A3.10 (Explan.)
14	Surface damage	Surface damage, pitting, break-off marks to depths exceeding 1 mm are to be repaired by welding or grinding	Visual	Refer to Fig. A3.10 (Explan.)
15	Manual welding bead	Weld beads with surface irregularities exceeding 3 mm or with a sharp crest are to be ground until the irregularity is less than 3 mm.	Visual	
16	Automatic welding bead	In general, no specific treatment is required.	Visual	
17	Overlap welding bead	Overlapping weld beads that create sharp notches are to be repaired as per item No. 13, "Undercut".	Visual	
18	Welding arc strike	Same as Item No. 12, "Spatter", and Item No. 14, "Surface Damage."	Visual	
19	Gas cut surface	Gas cut surfaces are to be ground as follows. (a) Except where hull strength considerations require a smooth finish, notches shall be ground to less than 2mm. (b) Gas slag produced during cutting is to be treated according to item 11. "Free Edge." Treatment to be accomplished before blasting.	Visual	
20	Lifting lugs	Where a lifting lug is partially removed by cutting the pad-eye portion off per page 17 of the Hull volume, the remaining stub and surrounding area is to be treated according to item No. 11 "Free Edge", item No. 15 "Manual welding bead", and item No. 19 "Gas cut surface".	Visual	

FIG. A3.2 Presurface Preparation Standards

∰ F 2016 – 00

No.	ltem	Process Standard	Judgment	Remarks
21	Moisture	To be removed until no visible moisture remains	Visual	
22	Oil and grease contaminants	To be removed, by wiping with thinner, fresh water (preferably high pressure wash), wire brush or compressed air or as permitted by paint manufacturer.	Visual	Refer to Fig. A3.10
23	Dust and non- visual contami- nants	Dust and contaminants are to be removed by compressed air, vacuum or high pressure water cleaning, as necessary.	Visual Clear Tape Test Method	(Explan.)
24	Chalk or slate pencil marks	To be removed with rag or brush in accordance with manufacturer's recommendation.	Visual	
25	Marking paint	To be removed by blasting, power tool or other. Marking paint for epoxy does not need to be removed if it is in accordance with paint manufacturer's recommendation	Visual	

FIG. A3.2 Presurface Preparation Standards (continued)

No.	Item	Process Standard	Judgment	Remarks
26	Solvent Cleaning	Refer to ship's specification	Visual Standards	
27	Mechanical Cleaning	Refer to ship's specification	Visual Standards	
28	Abrasive Blast Cleaning And Surface Profile	Refer to ship's specification	Visual Standards	Refer to Fig. A3.11 (Explanations)
29	Water Jetting	Refer to ship's specification	Visual Standards	
30	Abrasives	Refer to ship's specification	Written Standards	
31	Repairs to Shop Primed Surfaces	Refer to ship's specification	Visual Standards	

FIG. A3.3 Surface Preparation Standards

No.	Item	Process Standard	Judgment	Remarks
32	Stripe Coating Tanks	To achieve the specified DFT, stripe coats shall be applied to: edges of small holes, corners of other flame burned edges, free edges of structural members, and rough welding seams.	Visual	Refer to Fig. A3.12 (Explanations)
33	Overall coat	When more than one coat is specified, subsequent coats shall not be applied until preceding coat has sufficiently cured/dried in accordance with paint manufacturer's recommendation.	Wet gauge and Visual	

FIG. A3.4 Coating Standards

🕼 F 2016 – 00

No.	Item	Process standard	Judgment	Remarks
34	Sagging	Sagging with a height of 2 mm or more is to be repaired in accordance with the paint manufacturer's recommendations.	Visual	Refer to Fig. A3.13 (Explanations)
35	Spray dust	Dry spray, over spray, and spray dust is to be removed before painting in accordance with the manufacturer's recommendations.	Visual	
36	Foreign matter	Foreign matter in the paint film shall be removed. Damaged film is to be repaired in accordance with the manufacturer's recommendations.	Visual	
37	Crater, pinholes and bubbles	Defects are to be repaired in accordance with the manufacturer's recommendations.	Visual	Refer to Fig. A3.13 (Explanations)
38	Blushing	Excepting the final coat film, visible blushing on the film surface is to be repaired in accordance with the manufacturer's recommendations.	Visual	
39	Mechanical damage	Touch up is to be equivalent to the original specification, unless otherwise noted in the Painting Plan.	Visual	
40	Insufficient film thickness	Areas with insufficient film thickness are to be repaired in accordance with the manufacturer's recommendations.	Visual/Dry Film Gage	Refer to Fig. A3.14 (Explanations)

FIG. A3.5 Coating Repair Standards

No.	Item	Process standard	Judgment	Remarks
41	Film thickness measurement of tank plate	Film thickness to be measured for every five square meters for flat panels or corrugated bulkheads. Film thickness is to be measured at two (2) points in each panel of plating bounded by transverse and longitudinal members. (Note: <i>this excludes panel breaker, or panel</i> <i>stiffeners</i>)	Micro tester or electro- magnetic film thickness gauge	
42	Film thickness measurement of tank longitudinal members	Film thickness to be measured at two points between transverse members on each side of web and face plates (Note: <i>this excludes</i> <i>panel breakers and panel stiffeners</i>)	Micro tester or electro- magnetic film thickness gauge	Refer to Fig. A3.14 (Explanations)
43	Film thickness measurement of tank transverse members	Film thickness to be measured at three points between longitudinal girders or bulkhead on each side of web and face plates.	Micro tester or electro- magnetic film thickness gauge	

FIG. A3.6 Film Thickness Measurement Standards

∰ F 2016 – 00

No.	Item	Process standard	Judgment	Remarks
44	Temperature (During painting, and drying)	Steel and air temperatures are to be in accordance with the paint manufacturer's recommendations.	Measure with a thermometer	
45	Humidity (During painting, and initial drying)	Paint shall not be applied during periods of rain, snow, fog or mist in the open air or when ambient relative humidity exceeds manufacturer recommendation.	Measure with a hygrometer. Measure with a surface thermometer	
46	Ventilation (Immediately before blasting to paint)	Air change rate to be two times per hour, or more as directed by the manufacturer's product data sheet.	Check ventilating requirement	Refer to Fig. A3.15 (Explanations)
47	Ventilation (During paint drying)	Air change rate to be five times per hour or more. Dehumidifying capacity to be according to ventilation requirements. If the external air humidity is above 85%, air change rate may be decreased to the capacity of the dehumidifier.	Check ventilating requirement	
48	Erection of scaffolding	Make sure that scaffolding does not interfere with painting, ventilation, illumination, blasting and inspection (builder shall attempt to maintain a 150 mm clearance wherever possible). If not possible (to maintain the 150 mm clearance), the Owner shall be informed of the particular area and review during the scaffolding inspection.	Visual	
49	Removal of scaffolding	Care must be taken not to damage the film.	Visual	
50	Illumination	Effective illumination to be provided to ensure proper inspection of the blast and coated surface is achieved.	Visual	

FIG. A3.7 Environmental Painting Standards

∰ F 2016 – 00

				Control	
No.	Item	Standard	Owner	Shipy ard	Paint Manufacturer
51	Pre-Surface Preparation	Refer to Fig. A3.2	Δ	Δ	Δ
52	Surface Preparation	Refer to Fig. A3.3	Δ	Δ	Δ
53	Stripe Coating	Refer to Fig. A3.12 (Explanations)		Δ	Δ
54	Film Thickness	Refer to Figs. A3.9 and A3.14 (Explanations)		Δ	Δ
55	Final Inspection	Final confirmation of completion of painting	Δ	Δ	Δ
56	Temperature Humidity and Dew Point	Refer to Fig. A3.15 (Explanations)		Δ	Δ
57	Gas Concentration Of solvent	Refer to Fig. A3.15 (Explanations)		Δ	Δ
58	Ventilation	Refer to Fig. A3.15 (Explanations)		Δ	Δ

FIG. A3.8 Inspection Standards

₩ F 2016 – 00

N0.	Item	Explanation		
4	Tank anodes	 (1) Anodes may be installed in ballast tanks which are often loaded with sea water. (2) Anodes are not to be installed when dissolution of zinc into the tank contents presents problems (as in the case of jet fuel, etc.). 		
7	Dry film thickness for Ballast Tanks, Fore/Aft Peak Tanks, Wet Spaces and Water Tanks shown. See note for all other spaces.	Measurements at 80% of total measuring points must verify a film thickness exceeding or equal to a specified value (e.g., 300 microns). For the remaining 20%, the measured film thickness must be equal to or over 80% (e.g., 240 micron) of the specified thickness. (Note: All other tank spaces the 90-10 rule shall apply, All other surfaces to SSPC-PA 2)		
10	Tank painting process (Typical; guideline only, deviations are acceptable)	 For tank coating, block painting, painting in a dry dock, afloat painting, or any combination is considered. However this standard is based on afloat painting only. For abrasive blasting and painting in tank, the following two systems may be considered: 		
		Sendblasting of upper parts Sendblasting of the entire surface		
		Completion of paint- ing of upper parts Removal of 1		
		Sandblasting of bottom parts Completion of paint- ing of upper parts Removal of		
		Completion of paint- ing of bottom parts		

FIG. A3.9 General (Explanations)

∰ F 2016 – 00

No.	Item				Explanation		
1.01		Divis	ion			Velding	
		section	Sub- section	Item	Tolerance Li		Remarks
			hgt. of reinf. brth. of bead,		h: not de	⊥ h → efined	In cases where θ is over
1			flank of ang.		B: not defined $\theta = 9$		90°, repair by grinding or welding to make $\theta = 90^{\circ}$
13	Undercut		under- cut (butt weld)	Skin plate and face plate between 0.6⊗	Over 90 mm continuous d = 1.6mm	Ē	To be repaired by welding electrode or other, (carefully avoid short bead for higher tensile steels).
			under- cut fill	Others	d = 1.6mm		
			leg lgth.			d≦1mm	
				Compared with correct ones		L: Leg length ℓ: Throat depth L ≥ 0.9 ℓ ≥ 0.9	If over tolerance, fill weld to correct.
14	Surface damage	Divis	sion		r	Aaterial	b
	8-	section	Sub- section	Item		Re	marks
		surface flaw	Pit	Grade of pitting Area Ratio mm	 Grade A is considered slight and no repair is necessary. Grade B is medium and is to be repaired if necessary. Grade C requires some repair. Pitting or flaking on boundaries of grade "A" and "B", grade "B" and "C", and grade "A" and "C" shall be classified as grade "A", grade "B" and grade "A" respectively. Repair method of surface flaw: depth of defect = d, plate thickness = t (d=.07 t remove by grinding (but in no case d= 3 mm) .07 t= d= .2 t grinding followed by welding. 		s to be repaired if necessary. pair. ndaries of grade "A" and "B", grade "A" and "C" shall be grade "B" and grade "A" thaw: depth of defect = d, plate nove by grinding (but in no case
		surface flaw	Flaking	Grade of surface flaking Area Ratio mm 12313 + 145 # HED al 2015 + 14	Grade B i Grade C r 5. Pitting or grade "B' classified respective 6. Repair m thickness	s medium and i heeds some repa flaking on bour ' and "C", and g as grade "A", g ely. ethod of surface = t, d= .07 rem	ight and no repair is necessary. is to be repaired if necessary. air. ndaries of grade "A" and "B", grade "A" and "C" shall be grade "B" and grade "A" e flaw depth of defects = d, plate noved by grinding (but in no case d t grinding followed by welding.

FIG. A3.10 Preparation Standards for Steel (Explanations)

21	Moisture	Rainwater inflow and moisture in the air may produce sweat on steel surface. After secondary surface preparation, moisture may cause turning or hinder adhesion. Appropriate measures must be taken to prevent rainwater from flowing in.
22	Oil and grease contaminants	In general, remove with a rag and thinner/cleaner. For heavy adhesion of grease and oil, first dissolve with a brush soaked in thinner/cleaner, then wipe off with a clean rag. Detect oil visually with a black light or water spray bottle (water break test).
23	Dust and non-visual contaminants	Check for dust with clear tape, clean cloth or pictorial standard in accordance with ISO 8502-3. Remove dust by compressed air or vacuum. Non-visual contaminants may be removed in accordance with SSPC-SP 12/NACE No. 5 as applicable to meet the ship's specification and manufacturer's recommendation. Check for soluble salts according to ISO 8502-6 when required by manufacturer or ship's specification.
24	Chalk or slate pencil marks	Remove with a rag or brush. When marks enter an anchor-pattern concavity and are difficult to remove, use a hard brush.

FIG. A3.10 (continued)

No.	Item	Explanation
26	Solvent Cleaning	Surface cleanliness is to be in accordance with SSPC-SP 1. Note: SSPC-SP 1 is
		required prior to all other surface preparation methods.
		SSPC-SP 3 is the minimum accepted method of repair for non-immersion service
27	Mechanical	substrates. (SSPC-SP 2 may be substituted where SSPC-SP 3 is impractical).
	Cleaning	SSPC-SP 11 is the minimum accepted method for repair of immersion service
52	Cicannug	substrates.
		To determine surface cleanliness, refer to the SSPC-VIS 3 photographic standard.
		To determine surface profile use ASTM D 4417 Method A or B.
		SSPC-SP 10 is the minimum accepted surface preparation for pre-construction primer
28	Abrasive Blast Cleaning and	and for immersion service substrates.
	Surface Profile	SSPC-SP 7 may be used in place of SSPC-SP 3 when practical.
52	-	For cleanliness refer to SSPC-VIS 1-89 photographic standard.
		To determine surface profile use ASTM D 4417 Method A or B.
		Where acceptable according to the ship's specification and manufacturer's
29	Water Jetting	recommendations, clean in conformance with SSPC-SP 12/NACE No. 5.
		Refer to SSPC-VIS 4(1)/NACE No. 7 photographic standard.
52		To confirm pre-existing surface profile use ASTM D 4417.
30	Abrasives	Blast surface color tends to vary depending on the abrasive material used. As long as
		the same grade of cleanliness is used, a difference in color does not affect the film performance.
	1	Abrasives to be determined according to SSPC-AB 1.
		Recycled Abrasive Cleanliness to be determined according to SSPC-AB 2.
31	Repairs to shop primed surfaces	(1) In general shop primer in the cargo oil and slop retention tanks shall be removed
~ ^		in accordance with manufacturer's recommendation to a visual acceptance.
		(2) All other spaces intact shop primer may remain and over coated in accordance
		with manufacturer's recommendation.
		(3) In no way does the above supercede the ship's specification
		(3) in no way does the above supercede the ship's specification

FIG. A3.11 Surface Preparation Standards (Explanations)

No.	Item	Explanation
32	Stripe coating in tanks.	Where airless spraying is difficult and the film thickness can not be maintained, apply stripe coating with a brush before or after spraying. Stripe coating locations are as follows: (a) Inside and edges of holes

FIG. A3.12 Coating Standards (Explanations)

F 2016 – 00

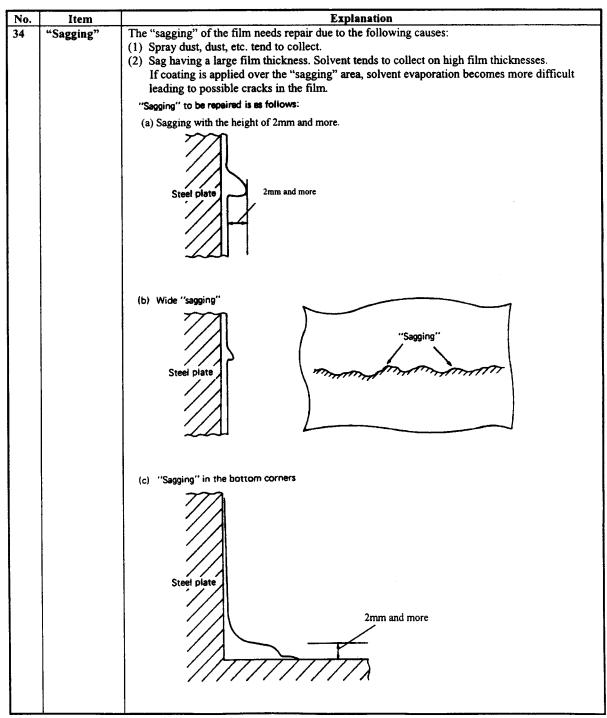


FIG. A3.13 Coating Repair Standards (Explanations)

No.	Item	Explanation
36	Foreign	When abrasives are used in surface preparations (blasting), abrasives remaining
	matter	may adhere to the substrate and be trapped in the film during painting.
		Foreign matter
1		
1	ļ	Film
1		
		/ / / / / Śteel plate / / / / / (
		The first state of the second state of the sec
		Foreign material shall be removed by screen, sanding, etc. as directed by the paint manufacturer.
1		
37	Craters,	(1) Pinholes tend to occur at the pit of manual welding bead.
	pinholes, and	(2) Craters tend to occur when surface tension becomes uneven during the film
	bubbles	drying process. A crater is a concave, and reduces film thickness.
		-> Crater
1		
		Film
)/////Steel plate ////////////////////////////////////
		(3) Bubbles occur when paint mixed with air is applied in the airless painting.
		(5) Dubbles occur when paint mixed with an is applied in the attress painting.
		Repairs to coating to be in accordance with manufacturer recommendations.
		Generally, surface will be feathered by sanding or screening and coating applied to
		achieve desired DFT.
38	"Blushing"	The film will "blush", due to humidity absorbed by the hardening agent. When
		humidity rises or dew is produced before curing, this may occur. Blushing is confined to the film surface and does not affect film performance. However,
		excessive blushing must be repaired because it hinders adhesion of overcoating.
		excessive orasiming must be repaired occause it minders adhesion of overcoating.
39	Mechanical	The surface of the film shall be lightly abraded with sandpaper, screen, or as
	damage	recommended by coating manufacturer and coating applied to the desired DFT.
		Feather
		I being the show the second
1		

FIG. A3.13 (continued)

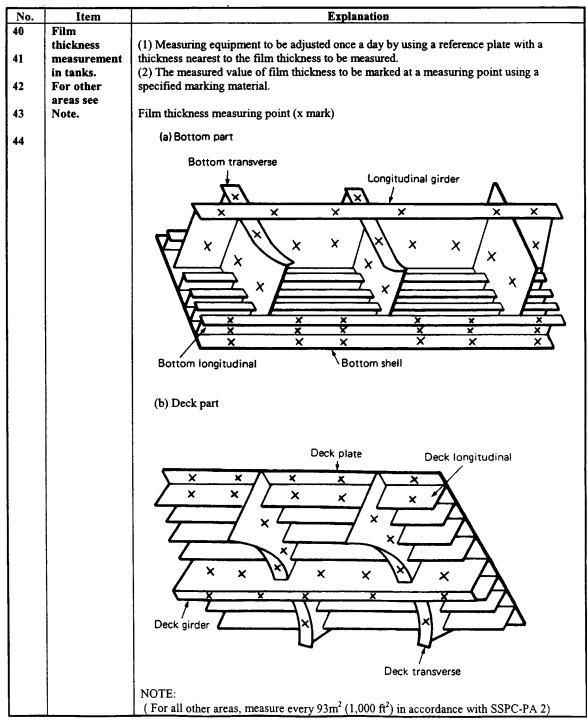


FIG. A3.14 Film Thickness Measurement Standards (Explanations)

∰ F 2016 – 00

No.	Item	Explanation
44	Temperature (During painting and drying)	 (1) Lowest temperature (a) Temperature must be 3° C or more above the dew point. Theoretically the steel plate surface temperature is used. However the air temperature in tank is practically used herein. (b) Curing of epoxy resin slows down when the temperature drops below 10° C and 5° C is the lowest limit. It is preferable to keep the temperature above 10° C and in conformance with the paint manufacturer's recommendation. (2) Highest temperature The maximum temperature is affected by the type of paint used and the painting process. Consult the paint manufacturer for maximum allowable temperature for application and cure.
45	Humidity (During painting, and initial drying)	Relative humidity is to be below 85%. This value applies when the painted surface temperature is equal to or above the atmospheric temperature.
46 47	Ventilation	 (1) The amount of ventilation required during painting and drying is greater than that required for blasting due to the following reasons: (a) The film begins hardening with evaporation of solvents in the film. (b) Solvent evaporation is greatly influenced by ventilation and temperature. (c) Retained solvents affect film performance. (2) Air change rate This standard is determined for correct film performance and this varies depending on tank capacity. These standards are different from OSHA 29 CFR 1915.35 and OSHA 29 CFR 1926.57. Consult "Industrial Ventilation, 20th Edition"¹ and OSHA Technical Manual Section III: Chapter 3 for guidance. (3) Air change rate for high humidity (85% RH or above). With high humidity, dew must be prevented after painting, from blasting stages up to the film hardening stages. Otherwise, the following may occur: (a) Turning of blasted surfaces (b) Film defects (Blushing, poor adhesion) As described above in (1) insufficient ventilation also deteriorates film performance. Consequently it is preferable to ventilate at least three times per hour even with high humidity for two days (this varies according to the type of paint) immediately after painting.

FIG. A3.15 Environmental Painting Standards (Explanations)

No.	Item	Explanation
46 47	The safety and Health Standards for Painting	 (1) The safety and Health Standards for Painting (a) When gas concentration reaches 10% of the lower explosion limit (LEL), stop operations and evacuate workers. (b) When gas concentration exceeds 10% of the lower explosion limit (LEL), take appropriate measures such as adding fans and reducing the number of paint sprayers. Refer to OSHA 29 CFR 1915.35 and 29 CFR 1926.57 Consult "Industrial Ventilation, 20th Edition" ¹ OSHA Technical Manual Section III: Chapter 3 for guidance.
45 46 47	Instruments for measuring environmental conditions	 (1) For humidity and dew point: Sling psychrometer and psychrometric tables or battery operated psychrometer according to ASTM E 337 Standard. (2) Surface temperature Magnetic contact surface thermometer. (3) Anemometer Used to measure the ventilation volume and rate.
48 49	Erection of scaffoldings	 (1) Scaffolding pieces Scaffolding pieces not to be removed are recommended to be of stainless steel. (2) The distance between painted surfaces and scaffolding is to be between 150 and 300 mm (to prevent unpainted portions). (3) Scaffold planks of expanded metal or similar open design to assist in abrasive removal and ventilation. (4) Height of scaffolding; 1,700 to 1,900 mm (to ensure easy and satisfactory work).
50	Illumination	Explosion-proof lighting is to be used during painting and drying.

FIG. A3.15 (continued)

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).