BS 4175:1989 UDC 620.178.152.42:539.532:669.1:620.1.052:003.62:001.4 @ British Standards Institution. No part of this publication may be photocopied or otherwise reproduced without the prior permission in writing of BS1 British Standard Methods for Superficial hardness test (Rockwell method) and for verification of superficial hardness testing machines (Rockwell method) Méthodes d'essai de la dureté superficielle (dureté Rockwell) et de la vérification des machines d'essai de dureté superficielle (dureté Rockwell) Verfahren zur Prüfung der Oberflächenhärte und zur Prüfung von Härteprüfmaschinen nach Rockwell BS 4175: 1989 ### Foreword This British Standard has been prepared under the direction of the Iron and Steel and the Non-ferrous Metals Standards Committees. It is published as a single document in order to draw attention to the need for regular verification of superficial hardness testing machines (Rockwell method) and to the availability of traceability to the national standard hardness scales. This British Standard supersedes BS 4175: Part 1: 1967 and BS 4175: Part 2: 1970, which are withdrawn. The technical committee has taken full account of corresponding documents prepared by the International Organization for Standardization (ISO) and of developments which have occurred in the design of testing machines. In addition, requirements for anvils, including surface finish, have been specified and more demanding tolerances have been specified for indenters, in order to give greater accuracy and long term reproducibility. As previously, the full direct verification procedure is carried out on a new machine or after major overhaul of a machine. Further checking that the accuracy of the machine is valid is provided by application of the indirect verification, following machine assembly and installation. Regular checks of accuracy of an installed machine, e.g. as part of quality assurance procedures or immediately after servicing, would normally be carried out by means of the indirect procedure (see appendix A). As the extent of usage of machines varies considerably it is not possible to give rules for frequency of such verifications. Guidance may be obtained on the basis of informed technical judgement from recognized calibrating authorities. Considerable importance is attached by the committee to routine monitoring and maintenance of a testing machine's performance between verifications. Although these procedures are not part of the standard as such, a recommended form of procedure that does not impose onerous obligations upon users is given in appendix A. The accurate determination of superficial hardness requires care and attention to detail. The recommendations included in the standard give guidance for achieving accuracy. Compliance with a British Standard does not of itself confer immunity from legal obligations. ### **Contents** | | Page | | Page | |--|----------------------------------|--|------| | Foreword Committees responsible | Inside front cover
Back cover | 20 Procedure for indirect verification of testing machine | 11 | | | | 21 Assessment of accuracy of the testing machine | 11 | | Methods | | Appendices | | | Section one. General | | A Monitoring the accuracy of the testing machine | 13 | | 1 Scope | 2 | B Additional information on the superficial hardness test (Rockwell) | 13 | | 2 Definitions | 2 f hardness 2 | C Corrections to Rockwell superficial hardness | 13 | | 3 Symbols and designations of | f hardness 2 | values obtained on convex cylindrical surfaces | 14 | | Section two. Determination of | Rockwell | Tables | | | superficial hardness | • | 1 Rockwell superficial hardness scales | 4 | | 4 Principle | 3 | 2 Dimensions of indenter balls for standardizing | | | 5 Test apparatus | 3 | machines | 10 | | 6 Conditions of test | 3
5 | 3 Permissible error in value of test block | | | 7 Test procedure | | hardness determined in indirect verification | 12 | | 8 Calculations | 5 | 4 Correction for test results obtained with | | | management and the second seco | | diamond cone indenter using HRN scales | 14 | | Section three. Direct verification | n or accuracy | 5 Correction for test results obtained with | | | of testing machine | _ | ball indenter using HRT scales | 14 | | 9 Principle | 7 | Figures | | | 10 Traceability | 7 | 1 Test with diamond cone (Rockwell superficial | | | 11 Force | 7 | scale HRN) | 3 | | 12 Indenter | 8 | 2 Test with steel ball (Rockwell superficial | • | | 13 Measuring device 14 Anvils | 8 | scale HRT) | 4 | | 15 Performance test | 8 | 3 Minimum thickness of test piece for Rockwell | • | | 15 renomiance lest | ŭ | superficial N scales | 5 | | Section four. Indirect verification | on of accuracy | 4 Minimum thickness of test piece for Rockwell | | | of testing machine | | superficial T scales | 6 | | 16 Principle | 9 | 5 Approximate diameter of indentation for | | | 17 Manufacture of hardness tes | | calculation of indentation location | 6 | | 18 Calibration of hardness test | | 6 Typical permissible monitoring results for a | | | 19 Standardizing machine | 9 | standardizing machine | 11 | | · · · · · · · · · · · · · · · · · | | 7 Testing machine repeatability requirements | | | | | at different hardness values | 12 | ### Section one. General ### 1 Scope This British Standard describes a method of test for determining the Rockwell superficial hardness of metals at room temperature. In sections three and four methods are described for direct and indirect verification respectively of the accuracy of a machine for testing Rockwell superficial hardness. NOTE. The titles of the publications referred to in this standard are listed on the inside back cover. ### 2 Definitions For the purposes of this British Standard the following definitions apply. - 2.1 hardness scale. A scale is represented by a number and a capital letter, which are associated with the force and type of indenter being used (see table 1). - 2.2 error in roundness (of a cone measured in a section normal to the indenter). The greatest radial distance between any point on the conical surface and the circumscribing circle. - 2.3 error in sphericity (of a ball). The greatest radial distance between any point on the ball surface and the circumscribing sphere. - 2.4 indirect verification (of a hardness testing machine). A performance test, using a specified number of calibrated test blocks and indentations, which provides traceability. - 2.5 direct verification (of a hardness testing machine). Traceable tests of the accuracy of the test force and indenter geometry and measuring system and performance tests given under indirect verification (see section four). - 2.6 repeatability (of a testing machine). The range of hardness values obtained on a test block in the indirect verification. - 2.7 error (of a testing machine). The difference between the mean hardness value obtained on a test block in the indirect verification and the value assigned to the test block by the calibrating authority. ### 3 Symbols and designations of hardness #### 3 1 General For the purposes of this British Standard the following symbols apply. | Symbol | Term | |----------------|--| | γ | Angle of the diamond cone (in degrees) | | R | Radius of curvature at the tip of the diamond cone (in mm) | | D | Diameter of steel ball (in mm) | | Fo | Preliminary test force (in N) | | F; | Additional test force (in N) | | F | Total test force (in N) | | h ₀ | Depth of indentation (in mm) under
preliminary test force before application of
additional test force | | h ₁ | Increase in depth of indentation (in mm) under additional test force | | e | Permanent increase of depth of indentation under preliminary test force after removal of additional test force (in Rockwell superficial units of 0.001 mm) | | E | A constant of 100 units when either the diamond cone or steel ball indenter is used | | HR | Rockwell hardness number | | Ra | Average surface roughness (in µm) (equivalent to CLA value) | | | NOTE, See BS 1134 : Part 1. | ### 3.2 Hardness value When defining a hardness value, the scale that has been used for the test shall be stated. The symbol HR shall be preceded by the hardness value and followed by a number and a capital letter representing the scale that has been used. Example. 70 HR 30 T indicates a Rockwell superficial hardness of 70 in the 30 T scale, obtained using a steel ball indenter with a preliminary test force of 29.42 N and a total test force of 294.2 N (see table 1). ### Section two. Determination of Rockwell superficial hardness ### 4 Principle An indenter comprising a diamond cone or a hardened steel ball mounted rigidly in a suitable holder is forced into the material with a preliminary test force F_0 (see figures 1(a) and 2(a)). When equilibrium has been reached, an indicating device, which follows the movements of the indenter and so responds to changes in depth of penetration, is set to a datum position. While the preliminary test force is still applied it is augmented by an additional test force F_1 with a resulting increase in penetration (see figures 1(b) and 2(b)). When equilibrium has again been reached, the additional force is removed but the preliminary force is maintained. Removal of F_1 allows a partial recovery, so reducing the depth of penetration (see figures 1(c) and 2(c)). The permanent increase in depth of penetration e resulting from the application and removal of the additional force is used to deduce the Rockwell superficial hardness number ### HR = E - e by means of the following equation: The unit of measurement for e is 0.001 mm. The type of indenter used, the magnitudes of the preliminary, additional and total test forces and the constant E for the Rockwell superficial scales of hardness covered by this standard are given in table 1. Also given is the field of application for each hardness scale in terms of the Rockwell superficial hardness range. ### 5 Test apparatus - 5.1 Superficial hardness testing machine (Rockwell), capable of applying a preliminary test force of 29.42 N and total test forces of 147.1 N, 294.2 N and 441.3 N with the accuracy specified in 11.3. - 5.2 *Indenter*, comprising a diamond cone or hardened steel ball, complying with clause 12 and mounted in a holder. - 5.3 Measuring device, capable of measuring changes in penetration depth to the accuracy specified in clause 13. - 5.4 Flat anvils, complying with clause 14. ### 6 Conditions of test ### 6.1 Test piece surfaces Test piece surfaces shall be smooth and free from scale and foreign matter. In particular, the surface in contact with the anvil and the surface to be indented shall be clean and dry unless otherwise specified in the product standard. Figure 1. Test with diamond cone (Rockwell superficial scale HRN) BS 4175 : 1989 Section two | Scale | Indenter | Preliminary force, F _a | Additional force, F, | Total
force, F | Constant
E | Range | |--------|--------------|-----------------------------------|----------------------|-------------------|---------------|-----------------| | | | N | N | N | | | | HR 15N | Diamond cone | 29.42 | 117.68 | 147.1 | 100 | 70 to 94 HR 15N | | HR30N | Diamond cone | 29.42 | 264.78 | 294.2 | 100 | 42 to 86 HR30N | | HR45N | Diamond cone | 29.42 | 411.88 | 441.3 | 100 | 20 to 77 HR45N | | HR15T | 1.5875 mm | | | - 1 | | | | | steel ball | 29.42 | 117.68 | 147.1 | 100 | 73 to 93 HR15T | | HR30T | 1.5875 mm | | | | | | | | steel ball | 29.42 | 264.78 | 294.2 | 100 | 43 to 82 HR30T | | HR45T | 1.5875 mm | | 1 | İ | <u> </u> | | | | steel ball | 29.42 | 411.88 | 441.3 | 100 | 12 to 72 HR45T | 3 ### 6.2 Test piece thickness No deformation shall be visible on the underside of the test piece after the test. The thickness of the test piece shall be at least 10 times the depth of the indentation (see figures 3 and 4). ### 6.3 Location of indentations The distance between the centre of any indentation and the edge of the test piece shall be at least 2.5 times the diameter of the indentation and not less than 1 mm. The distance between the centres of two adjacent indentations shall be at least three times the diameter of the indentation (see figure 5). ### 7 Test procedure Locate the test piece rigidly in relation to the indenter. Apply the test forces along the axis of the indenter and normal to the surface of the test piece, in such a manner that the indenter is forced into the test piece without shock or vibration. NOTE 1. It is important that the test piece lies firmly on the support so that displacement cannot occur during the test. NOTE 2. Test piece misalignments of 10° or more may cause unacceptable errors. NOTE 3. An anvil having a protuberance of about 6 mm diameter may be used, with advantage, for test pieces that are not flat. Bring the indenter into contact with the test surface and apply the preliminary test force F_0 . Set the measuring device reading to the value corresponding to the constant E and increase the force, in not less than 2 s and no more than 8 s, by the additional force F_1 to obtain a total test force F. Maintain F for a period (i.e. a dwell time) of 2 s to 6 s unless otherwise stated in the product standard. After removal of F_1 , maintain F_0 until the reading of the depth measuring device has been taken. NOTE 4. After any removal and replacement of the indenter or test piece support, it should be ascertained that the item is correctly mounted in its housing. After such a change has been made the first two readings should be disregarded. ### 8 Calculations For tests on flat surfaces, derive the Rockwell superficial hardness number from the permanent increase in depth of indentation e (see clause 4). NOTE 1. The Rockwell superficial hardness number is usually read directly from the measuring device. For tests on convex cylindrical surfaces apply the corrections given in appendix C. NOTE 2. In the absence of established conversions for tests on concave cylindrical and spherical surfaces, hardness values should be regarded as comparative. Figure 3. Minimum thickness of test piece for Rockwell superficial N scales BS 4175 : 1989 Section two ### Section three. Direct verification of accuracy of testing machine ### 9 Principle The accuracy of the applied forces, the physical characteristics of the indenter and anvil and the accuracy of the depth measuring device are determined. ### 10 Traceability The calibration of all measurement equipment used in both the direct and indirect verifications shall be traceable to national reference standards. The direct verification shall also include a performance test (indirect verification) in accordance with section four. ### 11 Force - 11.1 Verify the steady forces applied by the machine (see table 1) in accordance with BS 1610: Part 1 by means of either of the following: - (a) elastic proving devices previously calibrated to grade 0.5 of BS 1610: Part 2; or - (b) proving levers and masses that have been calibrated in accordance with BS 1610: Part 2. - 11.2 For each force, take three repeat readings at three or more positions of the carrier. NOTE, Immediately before each reading is taken, the plunger will have moved in the same direction as during a normal test. - 11.3 Each reading of the measured preliminary test force F_0 , both before application and after removal of the additional test force F_1 , shall be within 2% of the nominal force. - 11.4 Each reading of the measured total test force F shall be within 0.7 % of the nominal force. - 11.5 Apply the forces without shock or vibration. The magnitude of any additional impact force shall be less than 0.5 % of the nominal force. NOTE. When necessary, the impact force should be reduced by means of a dash-pot or other device. ### 12 Indenter #### 12.1 Diamond cone indenter (HRN scales) 12.1.1 The surface of the diamond cone and of the spherical tip shall be polished for a penetration depth of approximately 0.2 mm (equivalent to 0.4 mm conical generator) and shall be free from surface defects. NOTE. No surface defects should be visible at a magnification in the range \times 150 to \times 400. Measure the geometry of the indenter in at least four sections except when roundness is measured (see 12.1.2). 12.1.2 The diamond cone shall have an included angle of $120 \pm 0.35^{\circ}$ in each section measured. NOTE 1. Deviations from straightness of the generator of the diamond cone, adjacent to the blend, should not exceed 0.0006 mm over a minimum length of 0.4 mm. Such a deviation could introduce a variation of 40' (approximately 0.65°). NOTE 2. The error in roundness of the cone, measured in a section normal to the indenter axis adjacent to the blend, should not exceed 0.008 mm (see 12.1.4). Measurement of roundness should enable sections with minimum and maximum errors to be selected thus permitting measurements of the geometry of the indenter in only two sections. - 12.1.3 The angle between the axis of the diamond cone and the axis of the indenter holder, normal to the seating surface, shall not exceed 0.5°. - 12.1.4 The spherical tip of the diamond cone shall have a mean radius of 0.200 ± 0.010 mm. In each measured section, the radius shall be 0.200 ± 0.015 mm and local deviations from a truly spherical surface shall not exceed 0.002 mm. NOTE. If the error in roundness of the cone measured in a section normal to the indenter axis adjacent to the blend exceeds 0.008 mm, it will not be possible to manufacture the indenter to these radial tolerances. - 12.1.5 The surface of the cone and spherical tip shall blend in a tangential manner. - 12.1.6 Indirectly verify the indenter by comparing its performance in a standardizing machine with the performance of the machine's reference indenter. Carry out tests on a minimum of four hardness test blocks selected to cover the field of application specified in the following ranges: 20 to 31 HR 45 N 42 to 50 HR 30 N 77 to 86 HR 30 N - 90 to 94 HR 15 N For each block, the mean hardness value of three indentations made using the indenter to be verified shall not differ from the mean hardness value of three indentations obtained with the standardizing indenter by more than 0.5 scale unit. Place the indentations with the indenter to be verified and with the standardizing indenter on the test block in adjacent pairs. Carry out the tests in accordance with 19.1. ### 12.2 Steel ball indenter (HRT scales) - 12.2.1 Dimensions. The average diameter of a ball shall not differ from the nominal diameter by more than ± 0.0025 mm. The error in sphericity of a ball shall not exceed 0.0025 mm. - 12.2.2 Surface finish. The ball shall be free from surface defects visible at a magnification of \times 20 and the surface finish R_a shall not exceed 0.05 μ m. - 12.2.3 Hardness. Carry out a Vickers hardness test in accordance with BS 427: Part 1 on the curved surface of the ball using the load for the HV10 scale. The hardness shall be not less than 800 HV10. Either the appropriate correction for curvature in accordance with appendix B of BS 427: Part 1: 1961 shall be made to the measured hardness value or the mean measured diagonal of the indentation shall be not more than the maximum value of 0.146 mm. BS 4175 : 1989 Section three ### 13 Measuring device Verify the depth measuring device at not less than three points, including the points corresponding to the lowest and highest hardness for which the scales are normally used, by making known incremental movements of the indenter in the direction of increasing hardness value. The depth measuring device shall indicate correctly within ± 0.0005 mm, i.e. within ± 0.5 scale unit, at each point. ### 14 Anvils 14.1 Anvils shall have a minimum surface hardness of 58 HRC. 14.2 The surface of a flat anvil shall have a finish and flatness as follows: finish: not greater than $0.2 \mu m R_a$; flatness: error not greater than 2.5 µm/100 mm. ### 15 Performance test When tested in accordance with the indirect verification procedure in clause 20, the testing machine shall be accurate within the limits specified in clause 21. NOTE. The indirect verification confirms that the sum of the individual errors assessed in the direct verification does not exceed the allowable error given in table 3. ### Section four. Indirect verification of accuracy of testing machine. ### 16 Principle Measurements are made to determine the accuracy with which the testing machine measures the known hardness of test blocks that have been calibrated on a standardizing machine. NOTE. Calibrated test blocks can be obtained from appropriate manufacturers with standardizing authority. ### 17 Manufacture of hardness test blocks - 17.1 Each metal block to be calibrated on a standardizing machine shall be manufactured to give homogeneity and stability of structure. Steel blocks shall be demagnetized. - 17.2 Each metal block shall be of a thickness not less than 6 mm - 17.3 The maximum variation in flatness of the surfaces shall not exceed 0.010 mm. The bottom of the blocks shall not be convex. The maximum variation in thickness shall not exceed 0.015 mm/50 mm. - 17.4 The test surface and bottom surface shall be free from foreign matter that interferes with the measurement of the indentations. The surface roughness of both surfaces R_a shall not exceed 0.2 μ m. - 17.5 No material shall be removed from the block after it has been calibrated. ### 18 Calibration of hardness test blocks ### 18.1 General The calibration of the block shall establish its uniformity of hardness and its hardness value. The test block shall be calibrated in one selected Rockwell superficial scale, e.g. HR 30 T scale. The hardness value assigned to a block shall be directly or indirectly traceable to the national standard hardness scale through a hierarchical chain such as that provided by the British Calibration Service. NOTE. National standard Rockwell superficial scales (see table 1) are defined by standardizing machines that are maintained at the National Physical Laboratory (NPL), Teddington. ### 18.2 Location of indentations The distance between the centre of any indentation and the edge of the test block shall be at least three times the mean diameter of the indentation and not less than 2 mm. The distance between the centre of two adjacent indentations shall be at least five times the mean diameter of the indentations (see figure 5). #### 18.3 Calibration procedure Carry out the test using a standardizing machine complying with clause 19. ### 18.4 Uniformity of hardness Ten indentations distributed over the test surface shall be made on the block. The range of hardness values obtained from the 10 indentations shall not exceed the following values: - 2 % e or 0.6 scale unit, whichever is the greater, for the N scales: - 3 % e or 1.2 scale unit, whichever is the greater, for the T scales. NOTE, e is the mean permanent increase of depth of indentation and is equal to 100 minus the mean of the 10 hardness values. ### 18.5 Hardness value The hardness value assigned to the block shall be the mean hardness value obtained when examining the block for uniformity. This value shall be rounded to the nearest 0.1 scale unit. #### 18.6 Marking Each block shall be marked by the manufacturer with his name or trademark, a serial number and the mean hardness value. The marking shall be either on the test surface or on a side face of the block such that the marking is upright when the test surface is uppermost. #### 18.7 Documentation The standardizing authority shall issue a document stating the following: - (a) the number and date of this British Standard. - i.e. BS 4175: 1989; - (b) the serial number of the block; - (c) the hardness value assigned to the block and the hardness scale used, e.g. 70 HR 30 T; - (d) the maximum and minimum hardness values obtained in the calibration of the block; - (e) the manufacturer's name and the date of calibration; - (f) the thickness of the block where the marking is only on a side face of the block. ### 19 Standardizing machine ### 19.1 Direct verification - 19.1.1 General. The standardizing machine used for calibrating the hardness test blocks shall comply with 19.1.2 to 19.1.6. - 19.1.2 Force. Regardless of the position of the indenter carrier within its working range, the preliminary force F_0 shall be correct within \pm 0.5 % of its nominal value, both before application and after removal of the additional force F_1 . Each reading of the measured total force F shall be within \pm 0.2 % of the nominal test force. BS 4175: 1989 Section four #### 19.1.3 Diamond cone indenter 19.1.3.1 The diamond cone indenter shall comply with 12.1.1. 19.1.3.2 The diamond cone shall have a mean included angle of $120 \pm 0.10^{\circ}$. In each measured section, the included angle shall be $120 \pm 0.17^{\circ}$. Deviations from straightness of the generator of the diamond cone, adjacent to the blend, shall not exceed 0.0003 mm over a minimum length of 0.40 mm. The error in roundness of the cone, measured in a section normal to the indenter axis adjacent to the blend, shall not exceed 0.004 mm. 19.1.3.3 The angle between the axis of the diamond cone and the axis of the indenter holder, normal to the seating Jsurface, shall not exceed 0.3°. 19.1.3.4 The spherical tip of the diamond cone shall have a mean radius of 0.200 ± 0.005 mm. In each measured section, the radius shall be 0.200 ± 0.007 mm and local deviations from a truly spherical surface shall not exceed 0.002 mm. 19.1.3.5 The indenter shall be indirectly verified by comparing its performance in a standardizing machine with the performance of the machine's reference indenter. Tests shall be made on a minimum of four-hardness test blocks selected to cover the field of application in the following ranges: 20 to 31 HR 45 N 42 to 50 HR 30 N 77 to 86 HR 30 N 90 to 94 HR 15 N For each block, the mean hardness value of five indentations made using the indenter to be verified shall not differ from the mean hardness of five adjacent indentations obtained with the standardizing indenter by more than 0.3 scale unit. ### 19.1.4 Steel ball indenter. 19.1.4.1 The average diameter of a ball shall not differ from the nominal diameter by more than the appropriate tolerance given in table 2 and the error in sphericity of a ball shall not exceed the appropriate value given in table 2. 19.1.4.2 The surface finish and the hardness of a ball shall comply with 12.2.2 and 12.2.3 respectively. 19.1.5 Measuring device. The depth measuring device shall be calibrated so as to ensure that any interval in the working range can be measured correctly within \pm 0.0002 mm, i.e. within \pm 0.2 scale unit. 19.1.6 Method of force application. The mechanism that controls the application of the test force shall be one of the following. (a) Type A. Type A mechanism shall employ a device, e.g. a spring or dash-pot, to reduce the velocity of penetration of the indenter during the period of penetration. The initial velocity prior to penetration of the test block shall be not greater than 1 mm/s. (b) Type B. Type 8 mechanism shall maintain a constant velocity in the range 0.005 mm/s to 0.020 mm/s. Bring the indenter into contact with the test surface and apply the preliminary test force F_0 without shock or vibration. Maintain F_0 for a dwell period of not less than 2 s and not more than 20 s. Set the measuring device to its datum position and increase the force from F_0 to the total test force F. In type A mechanism machines, this shall be done in not less than 2 s and not more than 8 s. Maintain the additional test force F_1 for a dwell period of not less than 3 s and not more than 5 s. Obtain the final reading immediately after F_1 has been removed. NOTE. Corrections to the hardness values should be evaluated for the effects of deviations from the above criteria for a particular standardizing machine. ### 19.2 Monitoring of standardizing machine The accuracy and stability of the Rockwell superficial hardness scales defined by standardizing machines shall be monitored as follows. - (a) A minimum of two scales shall be monitored, i.e. HR 30 N and HR 30 T. - (b) A set of at least three test blocks covering the range of the first scale and three test blocks covering the range of the second scale shall be provided. The uniformity of hardness of each block shall comply with 18.4. - (c) Periodic monitoring values shall be obtained from the mean of five indentations in each block and the periodic monitoring tests shall be made at regular intervals of not more than 3 months. The location of the indentations on the test block shall comply with 18.2 and figure 5. - (d) An assessment of the performance of the machine shall be made from the recorded monitoring values over a period and shall show that a monitoring value is reproducible within ± 0.5 scale unit of the average of the monitoring values obtained for the block. - (e) The test blocks shall be calibrated at least twice (initially and at mid-life) by the standardizing machine that defines the national standard scale. The monitoring values shall be reproducible within 1.0 scale unit of the mean national standard hardness value for the block. | Table 2. Dimensions of indenter balls for standardizing machines | | | | | | | |--|------------------|-------------------------------------|-----------------------------|--|--|--| | Rockwell superficial hardness scale | Ball
diameter | Maximum error from nominal diameter | Maximum error in sphericity | | | | | | ıπm | mm | mm | | | | | HR 15, 30 and 45 N | 1.5875 | ± 0.00125 | 0.00125 | | | | NOTE 1. Typical permitted monitoring results for a standardizing machine are shown in figure 6. NOTE 2. A standardizing machine that compties with the requirements in clause 19 may be used to calibrate blocks in any of the scales given in table 1. # 20 Procedure for indirect verification of testing machine 20.1 First, ascertain that the testing machine is correctly set up on a rigid support free from significant vibration and that the indenter is securely fixed to the carrier. If the testing machine has a specimen clamping device, check that the clamping force is greater than the maximum test force. Ascertain that readings of the measuring device are not influenced by deformation of the frame and displacement of the supporting mechanism by more than 0.5 scale unit. NOTE. The effect of deformations on the readings may be checked by using a plain-ended carrier in place of the indenter, bearing directly on the anvil. 20.2 Carry out the indirect verification of the testing machine in accordance with clause 7 and using hardness test blocks calibrated in accordance with clause 18. 20.3 Before making test indentations; make at least two preliminary indentations to ensure that the machine is working freely and that the test block, indenter and anvil are seating correctly. Do not record the results of these preliminary indentations. NPL catibration value 20.4 On each hardness test block, make five indentations distributed over the surface of the test piece. The location of the indentations shall comply with 18.2. Observe and record the hardness number to at least 0.2 of a scale unit. 20.5 Verify the testing machine in at least two scales selected from the six available scales, to include at least one HRN scale. Use three test blocks per scale, one selected from each of the hardness ranges given in table 3. NOTE. Where appropriate, the hardness values of the blocks should approximate to the hardness of intended use. ## 21 Assessment of accuracy of the testing machine The accuracy of the machine shall be such that the hardness values obtained in each test of five indentations comply with the following requirements for repeatability and error. - (a) Repeatability. The range of the five hardness values (i.e. the difference between the largest and smallest value) shall not exceed the following values: - (1) 4 % e for the N scales or 1.2 superficial hardness numbers if this is greater; or - (2) 8 % e for the T scales or 2.4 superficial hardness numbers if this is greater. NOTE. These repeatability requirements are given graphically in figure 7. (b) Error. The mean of the five hardness values shall not differ from the value assigned to the block by more than the permissible error given in table 3. Figure 6. Typical permissible monitoring results for a standardizing machine | Table 3. Permissible error in value of test block hardness determined in indirect verification | | | | | | | |--|--|----------------------------------|--|--|--|--| | Rockwell superficial hardness scale | Hardness range of
standardized rock | Maximum
permissible
error | | | | | | | | Rockwell
superficial
units | | | | | | HR 15 N | 70 to 75
78 to 88
90 to 94 | ± 1
± 1
± 1 | | | | | | HR 30 N | 42 to 50
55 to 73
77 to 86 | ± 1
± 1
± 1 | | | | | | HR 45 N | 20 to 31
37 to 61
66 to 77 | ±1
±1
±1 | | | | | | HR 15 T | 73 to 78
80 to 85
86 to 93 | ±2
±2
±2 | | | | | | HR 30 T | 43 to 53
56 to 67
70 to 82 | ±2
±2
±2 | | | | | | HR 45 T | 13 to 28
33 to 48
53 to 72 | ± 2
± 2
± 2 | | | | | Figure 7. Testing machine repeatability requirements at different hardness values ### **Appendices** # Appendix A. Monitoring the accuracy of the testing machine - A.1 The procedure for monitoring the accuracy of a testing machine involves making regular tests on the same hardness test block and recording the results for assessment. - A.2 Monitoring should be carried out in accordance with clause 7 and using hardness test blocks calibrated in accordance with clause 18. The location of the indentations on the test block shall comply with 18.2. NOTE. In special cases, when it is desirable in place of test blocks to use test specimens of the same material or form as the components to be tested, the test specimens should be calibrated in accordance with clause 18 using a testing machine monitored in accordance with 19.2. - A.3 The testing machine should be in its usual condition and the indenter being used should be in the machine. - A.4 Whenever possible a test block should be provided of a similar hardness and calibrated in the same Rockwell superficial scale as that being used by the testing machine. Tests should be repeated at regular intervals. A single hardness test should be made on the block on each day that the machine is to be in continuous use and the result should be recorded. When necessary, a second test should be made and the results of both tests should be recorded. NOTE 1. The results of preliminary indentations should be ignored NOTE 2. For multiscale operations, the procedure should be repeated with a second test block having a different Rockwell superficial hardness, while the intervals between tests should be extended. - A.5 An assessment of the accuracy of the machine should be made from the recorded monitoring values over a period and the machine should be deemed satisfactory if an individual hardness value is reproducible within the following values from the assigned value for the block: - (a) for hardness scales using a diamond indenter, - i.e. HRN scales, within ± 2 scale unit; - (b) for hardness scales using a ball indenter, - i.e. HRT scales, within ± 4 scale unit. # Appendix B. Additional information on the superficial hardness test (Rockwell) B.1 The testing machine should not be sited in gritty or dusty conditions, nor in a position subject to excessive vibration or temperature changes. The performance of the machine should be frequently checked by means of calibrated hardness test blocks (see appendix A). - B.2 The indenter should be examined regularly for signs of damage and replaced whenever these are found. The results of any test made with a damaged indenter could be incorrect and should be discarded. - B.3 The surfaces of the indenter and of the test piece should be free from lubricant unless the product standard specifies otherwise. - B.4 The seating surfaces of the anvil and of the indenter holder should be examined periodically for freedom from burrs, rust and corrosion. - B.5 The speed of loading given in clause 7 should be maintained as alteration may lead to erroneous hardness values. NOTE. There is evidence that some materials may be sensitive to the rate of straining resulting in small changes in the value of the yield stress. The corresponding effect on the termination of the formation of an indentation may cause alterations in the hardness value. - B.6 For some materials, the requirement that the thickness of the test piece shall be not less than 10 times the depth of indentation may be unduly restrictive. If, in particular circumstances, it becomes necessary to accept a lower ratio of thickness to depth, the hardness value may be influenced by the size and hardness of the anvil, and a special investigation may be needed to establish what influence these factors exert on the true hardness as obtained with thicker test pieces. Alternatively, test results on thin specimens should be confined to comparative testing. - B.7 As there is no general procedure for accurately converting Rockwell superficial hardness into other scales of hardness, it is recommended that such conversions should be avoided, except for special cases where a reliable basis for the conversion has been established by direct tests on the material concerned. # Appendix C. Corrections to Rockwell superficial hardness values obtained on convex cylindrical surfaces The correction, in hardness units, corresponding to a particular hardness and diameter of cylindrical test piece, should be added to the Rockwell superficial hardness value obtained from the test (see tables 4 and 5). | Superficial | Diameter of cylindrical test piece | | | | | | | | | |-------------------|------------------------------------|--------------|---------------|------------|-------|-------|-------|-------|-------| | Rockwell hardness | 6 mm | 10 mm | 13 mm . | 16 mm | 19 mm | 22 mm | 25 mm | 32 mm | 38 mm | | | Correcti | on (in Rockv | vell superfic | ial units) | | | | | | | 20 | 3.0 | 2.0 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.0 | 1.0 | | 25 | 3.0 | 2.0 | 1.5 | 1.5 | 1.5 | 1.0 | 1.0 | 1.0 | 1.0 | | 30 | 3.0 | 2.0 | 1.5 | 1.5 | 1.0 | 1.0 | 1.0 | 1.0 | 0.5 | | 35 | 2.5 | 2.0 | 1.5 | 1.0 | 1.0 | 1.0 | 1.0 | 0.5 | 0.5 | | 40 | 2.5 | 1.5 | 1.5 | 1.0 | 1.0 | 1.0 | 1.0 | 0.5 | 0.5 | | 45 | 2.0 | 1.5 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.5 | 0.5 | | 50 | 2.0 | 15 | 1.0 | 1.0 | . 1.0 | 0.5 | 0.5 | 0.5 | 0.5 | | 55 | 2.0 | 1.5 | 1.0 | 1.0 | 0.5 | 0.5 | 0.5 | 0.5 | 0 | | 60 | 1.5 | 1.0 | 1.0 | 0.5 | 0.5 | 0.5 | 0.5 | 0 | 0 | | 65 | 1.5 | 1.0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0 | 0 | | 70 | 1.0 | 1.0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0 | 0 | | 75 | 1.0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0 | 0 | 0 | | 80 | 0.5 | 0.5 | 0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | | 85 | 0.5 | 0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NOTE. Corrections greater than 3 HRN are not considered acceptable and are therefore not included. | Superficial | Diameter of cylindrical test piece | | | | | | | | | |----------------------|------------------------------------|--------------|---------------|------------|-------|-------|---------------|--|--| | Rockwell
hardness | 6 mm | 10 mm | 13 mm | 16 mm | 19 mm | 22 mm | 25 m/r | | | | • | Correcti | on (in Rockv | vell superfic | ial units) | | | _ | | | | 10 | | | <u> </u> | 4.0 | 3.0 | 2.5 | 2.5 | | | | 20 | | 1 | 4.5 | 3.5 | 3.0 | 2.5 | 2.0 | | | | 30 | | ĺ | 4.0 | 3.5 | 2.5 | 2.0 | 2.0 | | | | 40 | | 4.5 | 3.5 | 3.0 | 2.5 | 2.0 | 2.0 | | | | 50 | | 4.0 | 3.0 | 2.5 | 2.0 | 1.5 | 1.5 | | | | 60 | 4.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.5 | 1.5 | | | | 7.0 | 3.5 | 2.5 | 2.0 | 1.5 | 1.0 | 1.0 | 1.0 | | | | 20 | 2.0 | 1.5 | 1.5 | 1.0 | 1.0 | 0.5 | 0.5 | | | | 90 | 1.0 | 1.0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | | ### Publications referred to BS 427 Method for Vickers hardness test Part 1 Testing of metals BS 1134 Method for the assessment of surface texture Part 1 Method and instrumentation BS 1610 Materials testing machines and force verification equipment Part 1 Specification for the grading of the forces applied by materials testing machines Part 2 Specification for the grading of equipment used for the verification of the forces applied by materials testing machines This British Standard, having been prepared under the direction of the Iron and Steel and the Non-ferrous Metals Standards Committee, was published under the authority of the Board of BSI and comes into effect on 31 July 1989 British Standards Institution, 1989 First published, as BS 4175 : Part 1, June 1967 and Part 2, February 1970 First revision ISBN 0 580 17157 4 The following BSI references relate to the work on this standard: Committee reference ISM/NFM/4 Draft for comment 87/36050 DC British Standards Institution. Incorporated by Royal Charter, BSI is the independent national body for the preparation of British Standards, It is the UK member of the International Organization for Standardization and UK sponsor of the British National Committee of the International Electrotechnical Commission. In addition to the preparation and promulgation of standards, BSI offers specialist services including the provision of information through the BSI Library and Standardline Database; Technical Help to Exporters; and other services. Advice can be obtained from the Enquiry Section, BSI, Milton Keynes MK14 6LE, telephone 0908 221166, telex 825777. Copyright, Users of British Standards are reminded that copyright subsists in all 8SI publications, No part of this publication may be reproduced in any form without the prior permission in writing of BSI. This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols and size, type or grade designations. Enquiries should be addressed to the Publications Manager, BSI, Linford Wood, Milton Keynes MK14 6LE. The number for telephone enquiries is 0908 220022 and for telex 825777. Contract requirements, A British Standard does not purport to include all the necessary provisions of a contract. Users of British Standards are responsible for their correct application. Revision of British Standards. British Standards are revised, when necessary, by the issue either of amendments or of revised editions. It is important that users of British Standards should ascertain that they are in possession of the latest amendments or editions. Automatic updating service. BSI provides an economic, individual and automatic standards updating service called PLUS. Details are available from BSI Enquiry Section at Mitton Keynes, telephone 0908 221166, telex 825777. Information on all BSI publications is in the BSI Catalogue, supplemented each month by BSI News which is available to subscribing members of BSI and gives details of new publications, revisions, amendments and withdrawn standards. Any person who, when making use of a British Standard, encounters an inaccuracy or ambiguity, is requested to notify BSI without delay in order that the matter may be investigated and appropriate action taken. ### Committees responsible for this British Standard The preparation of this British Standard was entrusted by the Iron and Steel Standards Committee (ISM/-) and the Non-ferrous Metals Standards Committee (NFM/-) to Technical Committee ISM/NFM/4, upon which the following bodies were represented: Aluminium Federation British Gas plc British Non-ferrous Metals Federation British Railways Board **British Steel Industry** Copper Development Association Department of Trade and Industry (National Engineering Laboratory) Department of Trade and Industry (National Physical Laboratory) ERA Technology Ltd. GAMBICA (BEAMA Ltd.) Ministry of Defence Society of British Aerospace Companies Limited Welding Institute The following bodies were also represented in the drafting of the standard, through subcommittees and panels: **SCIRA** Engineering and Scientific Equipment Limited Institution of Production Engineers Rhp Bearing Research Centre Rockwell Hardness Testers Ltd. Society of Motor Manufacturers and Traders Limited | Amendments issued since publication | |-------------------------------------| |-------------------------------------| | Amd. No. | Date of issue | Text affected | | |----------|---------------|---------------|--| |