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superscript epsilonej indicates an editorial change since the last revision or reapproval.

1. Scope respect to the handling of outliers. Surrogate methods may

calibration of infrared spectrometers used in determining th&€rein, but they should not claim to follow the procedures
physical or chemical characteristics of materials. These pradescribed herein.

tices are applicable to analyses conducted in the near infrared 1.7 This standard does not purport to address all of the
(NIR) spectral region (roughly 780 to 2500 nm) through theSafety concerns, if any, associated with its use. It is the

mid infrared (MIR) spectral region (roughly 4000 to 400 responsibility of the user of this standard to establish appro-
cm™). priate safety and health practices and determine the applica-

bility of regulatory limitations prior to use.
Note 1—While the practices described herein deal specifically with

mid- and near-infrared analysis, much of the mathematical and procedur@. Referenced Documents
detail contained herein is also applicable for multivariate quantitative .

analysis done using other forms of spectroscopy. The user is cautioned that2'1 ASTM Sta_lndards. . N
typical and best practices for multivariate quantitative analysis using other D 1265 Practice for Sampling Liquified Petroleum (LP)

forms of spectroscopy may differ from practices described herein for mid- ~ Gases (Manual Metho#l)
and near-infrared spectroscopies. D 4057 Practice for Manual Sampling of Petroleum and
1.2 Procedures for collecting and treating data for develop- _ Petroleum Products . _
ing IR calibrations are outlined. Definitions, terms, and cali- D 4177 Practice for Automatic Sampling of Petroleum and
bration techniques are described. Criteria for validating the _Petroleum Products _
performance of the calibration model are described. D 4855 Practices for Comparing Test Methbds
1.3 The implementation of these practices require that the D 6122 Practice for Validation of Multivariate Process In-
IR spectrometer has been installed in compliance with the _frared Spectrophotometérs _
manufacturer’s specifications. In addition, it assumes that, at D 6299 Practice for Applying Statistical Quality Assurance
the times of calibration and of validation, the analyzer is  Techniques to Evaluate Analytical Measurement System

operating at the conditions specified by the manufacturer. Performanc% o o _
1.4 These practices cover techniques that are routinely D 6300 Practice for Determination of Precision and Bias

guantitative analysis. The practices outlined cover the general Lubr|cant§_ .

cases for coarse solids, fine ground solids, and liquids. All E131 Terml.nology Relating to Mol.ecular Spectroscopy _
techniques covered require the use of a computer for data E 168 Practices for General Techniques of Infrared Quanti-
collection and analysis. tative Analys@ N _

1.5 These practices provide a questionnaire against which E 275 Practice for Describing and Measuring Performance
multivariate calibrations can be examined to determine if they ~ ©Of Ultraviolet, Visible, and Near Infrared Spectrophotom-
conform to the requirements defined herein. eter . . .

1.6 For some multivariate spectroscopic analyses, interfer- E 334 Practice for General Techniques of Infrared Mi-
ences and matrix effects are sufficiently small that it is possible croanalys%_ _ _ e
to calibrate using mixtures that contain substantially fewer E 456 Terminology Relating to Quality and Statistics
chemical components than the samples that will ultimately be E 691 Practice for Conducting an Interlaboratory Study to
analyzed. While these surrogate methods generally make use Determine the Precision of a Test Metfiod
of the multivariate mathematics described herein, they do not E 932 Practice for Describing and Measuring Performance
conform to procedures described herein, specifically with—
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of Dispersive Infrared Spectrometérs nents than the samples which will ultimately be analyzed.
E 1421 Practice for Describing and Measuring Performance 3.2.12 surrogate methodn—a standard test method that is
of Fourier Transform Infrared (FT-IR) Spectrometers: based on a surrogate calibration.

Level Zero and Level One Tests 3.2.13 validation samples-a set of samples used in vali-
E 1866 Guide for Establishing Spectrophotometer Perfordating the model. Validation samples are not part of the set of
mance Tesfs calibration samples. Reference component concentration or

E 1944 Practice for Describing and Measuring Performanceroperty values are known (measured by reference method),
of Fourier Transform Near-Infrared (FT-NIR) Spectrom- and are compared to those estimated using the model.
eters: Level Zero and Level One Tésts ,
4. Summary of Practices
3. Terminology 4.1 Multivariate mathematics is applied to correlate the

3.1 Definitions—For terminology related to molecular spec- absorbances measured for a set of calibration samples to
troscopic methods, refer to Terminology E 131. For terminol-reference component concentrations or property values for the
ogy relating to quality and statistics, refer to Terminology set of samples. The resultant multivariate calibration model is
E 456. applied to the analysis of spectra of unknown samples to

3.2 Definitions of Terms Specific to This Standard: provide an estimate of the component concentration or prop-

3.2.1 analysis—in the context of this practic¢he process of erty values for the unknown sample.
applying the calibration model to an absorption spectrum so as 4.2 Multilinear regression (MLR), principal components
to estimate a component concentration value or property.  regression (PCR), and partial least squares (PLS) are examples

3.2.2 calibration—a process used to create a model relatingof multivariate mathematical techniques that are commonly
two types of measured data. In the context of this practice, ased for the development of the calibration model. Other
process for creating a model that relates component concemathematical techniques are also used, but may not detect
trations or properties to absorbance spectra for a set of knowsutliers, and may not be validated by the procedure described
reference samples. in these practices.

3.2.3 calibration model-the mathematical expression that 4.3 Statistical tests are applied to detect outliers during the
relates component concentrations or properties to absorbancgsvelopment of the calibration model. Outliers include high
for a set of reference samples. leverage samples (samples whose spectra contribute a statisti-

3.2.4 calibration samples-the set of reference samples cally significant fraction of one or more of the spectral
used for creating a calibration model. Reference componentariables used in the model), and samples whose reference
concentration or property values are known (measured byalues are inconsistent with the model.
reference method) for the calibration samples and correlated to 4.4 Validation of the calibration model is performed by
the absorbance spectra during the calibration. using the model to analyze a set of validation samples and

3.2.5 estimate—the value for a component concentration or statistically comparing the estimates for the validation samples
property obtained by applying the calibration model for theto reference values measured for these samples, so as to test for
analysis of an absorption spectrum. bias in the model and for agreement of the model with the

3.2.6 model validatior—the process of testing a calibration reference method.
model to determine bias between the estimates from the model 4.5 Statistical tests are applied to detect when values esti-
and the reference method, and to test the expected agreemeiited using the model represent extrapolation of the calibra-
between estimates made with the model and the referengwn.
method. 4.6 Statistical expressions for calculating the repeatability

3.2.7 multivariate calibration—a process for creating a of the infrared analysis and the expected agreement between
model that relates component concentrations or properties the infrared analysis and the reference method are given.
the absorbances of a set of known reference samples at more
than one wavelength or frequency. 5. Significance and Use

3.2.8 reference methedthe analytical method that is used 5.1 These practices can be used to establish the validity of
to estimate the reference component concentration or propertiie results obtained by an infrared (IR) spectrometer at the time
value which is used in the calibration and validation proce-the calibration is developed. The ongoing validation of esti-
dures. mates produced by analysis of unknown samples using the

3.2.9 reference valuesthe component concentrations or calibration model should be covered separately (see for ex-
property values for the calibration or validation samples whichample, Practice D 6122).
are measured by the reference analytical method. 5.2 These practices are intended for all users of infrared

3.2.10 spectrometer/spectrophotometer  qualification spectroscopy. Near-infrared spectroscopy is widely used for
n—the procedures by which a user demonstrates that thguantitative analysis. Many of the general principles described
performance of a specific spectrometer/spectrophotometer is these practices relate to the common modern practices of
adequate to conduct a multivariate analysis so as to obtaimear-infrared spectroscopic analysis. While sampling methods
precision consistent with that specified in the method. and instrumentation may differ, the general calibration meth-

3.2.11 surrogate calibration n—a multivariate calibration odologies are equally applicable to mid-infrared spectroscopy.
that is developed using a calibration set which consists oNew techniques are under study that may enhance those
mixtures which contain substantially fewer chemical compo-discussed within these practices. Users will find these practices
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to be applicable to basic aspects of the technique, to includmonitored for continued accuracy and precision. Simulta-
sample selection and preparation, instrument operation, anteously, the instrument performance must be monitored so as
data interpretation. to trace any deterioration in performance to either the calibra-
5.3 The calibration procedures define the range over whickion model itself or to a failure in the instrumentation perfor-
measurements are valid and demonstrate whether or not timeance. Procedures for verifying the performance of the analy-
sensitivity and linearity of the analysis outputs are adequate fagis are only outlined in Section 22 but are covered in detail in
providing meaningful estimates of the specific physical orPractice D 6122. The use of this method requires that a model
chemical characteristics of the types of materials for which thejuality control material be established at the time the model is
calibration is developed. developed. The model QC material is discussed in Section 22.
. o L For practices to compare reference methods and analyzer
6. Overview of Multivariate Calibration methods, refer to Practices D 4855.
6.1 The practice of infrared multivariate quantitative analy- 6.1.8 Transfer of Calibrations-Transferable calibrations
sis involves the following steps: are equations that can be transferred from the original instru-
6.1.1 Selecting the Calibration SetThis set is also termed ment, where calibration data were collected, to other instru-
the training set or spectral library set. This set is to represent athents where the calibrations are to be used to predict samples
of the chemical and physical variation normally encounteredor routine analysis. In order for a calibration to be transferable
for routine analysis for the desired application. Selection of thet must perform prediction after transfer without a significant
calibration set is discussed in Section 17, after the statisticalecrease in performance, as indicated by established statistical
terms necessary to define the selection criteria have beagsts. In addition, statistical tests that are used to detect
defined. extrapolation of the model must be preserved during the
6.1.2 Determination of Concentrations or Properties, or transfer. Bias or slope adjustments, or both, are to be made
Both, for Calibration SamplesThe chemical or physical after transfer only when statistically warranted. Calibration
properties, or both, of samples in the calibration set must beansfer, that is sometimes referred to as instrument standard-
accurately and precisely measured by the reference method jigation, is discussed in Section 21.
order to accurately calibrate the infrared model for prediction )
of the unknown samples. Reference measurements are dié- Infrared Instrumentation
cussed in Section 9. 7.1 A complete description of all applicable types of infra-
6.1.3 The Collection of Infrared SpectraThe collection of red instrumentation is beyond the scope of these practices.
optical data must be performed with care so as to preser®nly a general outline is given here.
calibration samples, validation samples, and prediction (un- 7.2 The IR instrumentation is comprised of two categories,
known) samples for analysis in an alike manner. Variation inincluding instruments that acquire continuous spectral data
sample presentation technique among calibration, validatiorgver wavelength or frequency ranges (spectrophotometers),
and prediction samples will introduce variation and error whichand those that only examine one or several discrete wave-
has not been modeled within the calibration. Infrared instru{engths or frequencies (photometers).
mentation is discussed in Section 7 and infrared spectral 7.2.1 Photometers may have one or a series of wavelength
measurements in Section 8. filters and a single detector. These filters are mounted on a
6.1.4 Calculating the Mathematical ModelThe calcula- turret wheel so that the individual wavelengths are presented to
tion of mathematical (calibration) models may involve aa single detector sequentially. Continuously variable filters
variety of data treatments and calibration algorithms. The morenay also be used in this fashion. These filters, either linear or
common linear techniques are discussed in Section 12. Aircular, are moved past a slit to scan the wavelength being
variety of statistical techniques are used to evaluate antheasured. Alternatively, photometers may have several mono-
optimize the model. These techniques are described in Secti@hromatic light sources, such as light-emitting diodes, that
15. Statistics used to detect outliers in the calibration set arsequentially turn on and off.
covered in Section 16. 7.3 Spectrophotometers can be classified, based upon the
6.1.5 Validation of the Calibration Model-Validation of  procedure by which light is separated into component wave-
the efficacy of a specific calibration model (equation) requiredengths. Dispersive instruments generally use a diffraction
that the model be applied for the analysis of a separate set gfating to spatially disperse light into a continuum of wave-
test (validation) samples, and that the values predicted for thedengths. In scanning-grating systems, the grating is rotated so
test samples be statistically compared to values obtained by thiat only a narrow band of wavelengths is transmitted to a
reference method. The statistical tests to be applied fosingle detector at any given time. Dispersion can occur before
validation of the model are discussed in Section 18. the sample (pre-dispersed) or after the sample (post-dispersed).
6.1.6 Application of the Model for the Analysis of 7.3.1 Spectrophotometers are also available where the
Unknowns—The mathematical model is applied to the spectravavelength selection is accomplished without moving parts,
of unknown samples to estimate component concentrations asing a photodiode array detector. Post-dispersion is utilized. A
property values, or both, (see Section 13). Outlier statistics argrating can again provide this function, although other meth-
used to detect when the analysis involves extrapolation of theds, such as a linear variable filter (LVF) accomplish the same
model (see Section 16). purpose (a LVF is a multilayer filter that has variable thickness
6.1.7 Routine Analysis and MonitorirgOnce the efficacy along its length, such that different wavelengths are transmitted
of calibration equations is established, the equations must ke different positions). The photodiode array detector is used to
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acquire a continuous spectrum over wavelength without meextraneous noise within the spectral signhal. Scanning/
chanical motion. The array detector is a compact aggregate afiterferometer-based systems also allow greater wavelength/
up to several thousand individual photodiode detectors. Eacliequency precision between instruments due to internal
photodiode is located in a different spectral region of thewavelength/frequency standardization techniques, and the pos-
dispersed light beam and detects a unique range of waveibilities of computer-generated spectral corrections. For ex-
lengths. ample, scanning instruments have received approval for com-

7.3.2 The acousto-optical tunable filter is a continuousplex matrices, such as animal feed and forade<)°
variant of the fixed filter photometer with no moving optical 7.6 Descriptions of instrumentation designs related to Refs
parts for wavelength selection. A birefrigent crystal (for ex- (1) and(2) are found in Ref¢3) and(4). Other instrumentation
amp|e' tellurium oxide) is used, in which acoustic waves at §|mllar in performance to that described in these references is
selected frequency are applied to select the wavelength band @pceptable for all near-infrared techniques described in these
light transmitted through the crystal. Variations in the acoustidoractices.
frequency cause the crystal lattice spacing to change, that in 7.7 For information describing the measurement of perfor-
turn, causes the crystal to act as a variable transmissiomance of ultraviolet, visible, and near infrared spectrophotom-
diffraction grating for one wavelength (that is, a Bragg diffrac- eters, refer to Practice E 275. For information describing the
tor). A single detector is used to analyze the signal. measurement of performance of dispersive infrared spectro-

7.3.3 An additional category of spectrophotometers useBhotometers, refer to Practice E 932. For information describ-
mathematical transformations to convert modulated light sigin9 the measurement performance of Fourier Transform mid-
nals into spectral data. The most well-known example is thdnfrared spectrophotometers, refer to Practice E 1421. For
Fourier transform, that when applied to infrared (IR) is knowninformation describing the measurement performance of Fou-

as FT-IR. Light is divided into two beams whose relative pathdi€’ Transform near-infrared spectrophotometers, refer to Prac-
are varied by use of a moving optical element (for examplel!c® E 1944. For spectrophotometers to which these practice do

either a moving mirror, or a moving wedge of a high refractive "0t apply, refer to Guide E 1866.
index material). The beams are recombined to produce
interference pattern that contains all of the wavelengths o o ) ]
interest. The interference pattern is mathematically converted 8:1 Multivariate calibrations are based on Beers Law,
into spectral data using the Fourier transform. The FT methofl@mely, the absorbance of a homogeneous sample containing

can operate in the mid-IR and near-IR spectral regions. The F§" absorbing substance is linearly proportional to the concen-
instruments use a single detector. tration of the absorbing species. The absorbance of a sample is

7.3.4 A second type of transformation spectrophotomete eflneq as the logarithm to the base ten of the reciprocal of the
ransmittance, T).

uses the Hadamard transformation. Light is initially disperse
with a grating. Light then passes through a mask mounted on A = log,o(1/T)

or adjacent to a single detector. The mask generates a seriesffe transmittanceT, is defined as the ratio of radiant power
patterns. For example, these patterns may be formed byansmitted by the sample to the radiant power incident on the
electronically opening and shutting various locations, such asample.

in a liquid crystal display, or by moving an aperture or slit

h h the b Th dulati iter th distri 8.1.1 For measurements conducted by reflectance, the re-
roug € beam. These moduiations alter the energy distlyrs 1ance R is sometimes substituted for the transmittaifice

bution incident upon the detector. A mathematical transforma-l-he reflectance is defined as the ratio of the radiant power

tion is then used to convert the signal into spectral im‘ormationreﬂected by the sample to the radiant power incident on the
7.4 Infrared instruments used in multivariate calibrationssgmpe.

should be installed and operated in accordance with the _ _ _ o

instructions of the instrument manufacturer. Where applicable, NZTE é;;gfiéi'aé'ggisz'g; Toloﬁ;é;@;stﬂ‘e’t ?e?aetrg‘r:ts'ﬁ?' bl;gt\r;;gir e

the per_form_anc_e of the mStrume.nt should be tESted_ at th_e tim eas?ﬁed reflectanc®, gnd the concentration of the absol:bing species.

the Ca“brat'on IS ConduptEd using procedures defined in thpor some applications, other linearization functions (for example,

appropriate ASTM practice (see 2.1). The performance of th&upelka-Munk) may be more appropriats).

instrument should be monitored on a periodic basis using the

same procedures. The monitoring procedure should dete

changes in the performance of the instrument (relative to th

seen during collection of the calibration spectra) that woul

affect the estimation made with the calibration model.

7.5 For most infrared quantitative applications involving NoTe 3[[:0 anOid Cc?“fUSiO”v tg‘e Lefere”ge measurement of tdhehradia”g
complex matrices, it is a general consensus that scanning-typge" Wil be referred to as a background measurement, and the wor
instruments (either dispersive or interferometer based) I,Ovidreference will only be used to refer to measurements made by the
Ins p S p ’ ,l%ference method against which the infrared is to be calibrated. (See
the greatest performance, due to the stability and reproducibikection 9.)
ity of modern instrumentation and to the greater amount of
spectral data provided for computer interpretation. These data
allow for greater calibration ﬂeX|b|I|ty and additional OptioNS  9he poldface numbers in parentheses refer to a list of references at the end of

for selections of spectral areas less sensitive to band shifts ame text.

. Infrared Spectral Measurements

8.1.2 For most types of instrumentation, the radiant power
Fﬁcident on the sample cannot be measured directly. Instead, a
eference (background) measurement of the radiant power is
ade without the sample being present in the light beam.
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8.1.3 A measurement is then conducted with the samplacquisition (scan speed). A detailed description of the spectral
present, and the ratio], is calculated. The background acquisition parameters and their effect on multivariate calibra-
measurement may be conducted in a variety of ways dependirigpns is beyond the scope of these practices. However, it is
on the application and the instrumentation. The sample and itsssential that all adjustable parameters that control the collec-
holder may be physically removed from the light beam and dion and computation of spectral data be maintained constant
background measurement made on the “empty beam”. Thi#or the collection of spectra of calibration samples, validation
sample holder (cell) may be emptied, and a backgroundamples, and unknown samples for which estimates are to be
measurement may be taken through the “empty cell”. made.

Nore 4—For optically thin cells, care may be necessary to avoid optical 8-> FOr definitions and further description of general infra-
interferences resulting from multiple internal reflections within the cell. Féd quantitative mgagurement teChmqueS,. refer to 'Pract|ce
For very thick cells, differences in the refractive index between the sampl& 168. For a description of general techniques of infrared

and the empty cell may change properties of the optical system, fomicroanalysis, refer to Practice E 334.
example, shift focal points.

8.1.4 The sample holder (cell) may be filled with a liquid 9. Reference Method and Reference Values

that has minimal absorption in the spectral range of interest, 9.1 |nfrared spectroscopy requires calibration to determine
and the background measurement may be taken through thge proportionality relationship between the signals measured
“background liquid.” Alternatively, the light beam may be split and the component concentrations or properties that are to be
or alternately passed through the sample and through agstimated. During the calibration, spectra are measured for
“empty beam,” an “empty cell,” or a “background liquid.” For samples for which these reference values are known, and the
reflectance measurements, the reflectance of a material haViFgationship between the Samp|e absorbances and the reference
minimal absorbance in the region of interest is generally use¢a|yes is determined. The proportionality relationship is then
as the background measurement. applied to the spectra of unknown samples to estimate the
8.1.5 The particular backgl’ound referencing SCheme that i§0ncentration or property values for the Samp'e_
used may vary among instruments, and among applications. g 5 qor simple mixtures containing only a few chemical

The same background referencing scheme must be employedonents, it is generally possible to prepare mixtures that
for.the. measurement of all spectra of calibration samples,,, ‘serve as standards for the multivariate calibration of an
validation samples, and unknown samples to be analyzed. inareq analysis. Because of potential interferences among the
_ 8.2 Traditionally, a sample is manually brought to the 5,56 rhances of the components, it is not sufficient to vary the
instrument and placed in a suitable optical container (a cell 0fynentration of only some of the mixture components, even
cuvette with windows that transmit in the region of interest).,, o analyses for only one component are being developed.
Alternatively, tra_msfer pipes can continuously ﬂOW.”qL‘id Instead, all components should be varied over a range repre-
through an optical cell in the instrument for CONtiNUOUS contative of that expected for future unknown samples that are
analysis. With optical fibers, the sample can be analyzeg, pe analyzed. Since infrared measurements are conducted on

remotely from the instrument. Light is sent to the sample, i aq yolume of sample (for example, a fixed cell pathlength),

through an optical fiber or fibers and returned to the instrumen g preferable that concentration reference values be expressed
by means of another fiber or group of fibers. Instr_uments ha\_/ﬁ1 volumetric terms, for example, in volume percentage, grams
been developed that use single fibers to transmit and receiyg, mijjlitre, moles per cubic centimetre, and so forth. Devel-
the light, as well as those using bundles of fibers for thisyning muyltivariate calibrations for reference concentrations
purpose. Detectors _and Ilght sources external' to the mstrume:g pressed in other terms (for example, weight percentage) can
can also be used, in which case only one fiber or bundle if5q {o models that are linear approximations to what is really

needed. For spectral regions where transmitting fibers do nof g jinear relationship and can lead to less accurate estimates
exist, the same function can be performed over limited diSyf the concentrations.

tances using appropriate optical transfer optics. 9.3 For complex mixtures, such as those obtained from
Note 5—If the instrument uses predispersion of the light, some cautiopetrochemical processes, preparation of reference standards is
must be exercised to avoid introducing ambient light into the system at thgenerally impractical, and the multivariate calibration of an
sample position, since such light may be detected, giving rise to erroneoygrared analysis must typically be performed on actual process
absorbance measurements. samples. In this case, the reference values used to calibrate the
8.3 Although most multivariate calibrations for liquids in- infrared analysis are obtained by a reference analytical method.
volve the direct measurement of transmitted light, alternativélhe accuracy of a component concentration or property value
sampling technologies (for example, attenuated total reflecestimated by a multivariate infrared analysis is highly depen-
tance) can also be employed. Transmittance measurements agnt on the accuracy and precision of the reference values used
be employed for some types of solids (for example, polymein the calibration. The expected agreement between the infra-
films), whereas other solids (for example, powdered solids) areed estimated values and those obtained from a single reference
more commonly measured by diffuse reflectance techniguesmeasurement can never exceed the repeatability of the refer-
8.4 For most infrared instrumentation, a variety of adjust-ence method, since, even if the infrared estimated the true
able parameters are available to control the collection andalue, the measurement of agreement is limited by the preci-
computation of the spectral data. These parameters control, faion of the reference values. Knowledge of the precision
instance, the optical and digital resolution, and the rate of datéepeatability) of the reference method is critical in the
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development of an infrared multivariate calibration. The pre- 9.6 Reference methods that are not ASTM methods can be
cision of the reference data used in developing a model, and thesed for the multivariate calibration of infrared analyses, but in
accuracy of the model can be improved by averaging repeatdflis case, it is the responsibility of the method developer to
reference measurements. establish the precision of the reference method using proce-

. o ures similar to those detailed in Practice E 691, inNtasmual
Note 6—If the reference values used to calibrate a multivariate infrare Det . Precisi for ASTM Method Petrol
analysis are generated in a single laboratory, it is essential that th r-betermining Frecision for ethods on Fetroleum

measurement process used to generate these values be monitored for ff®ducts and Lubricant8 and in Practice D 6300.

and precision using suitable quality assurance procedures (see for ex-9.7 When multiple reference measurements are made on an
ample, Practice D 6299. If primary standards are not available to allow théndividual calibration or validation sample, a Dixon’s Test (see
bias of the reference measurement process to be established, it &1 1) should be applied to the values to determine if all of the
recommended that the laboratory participate in an interlaboratory Crosseference values came from the same population, or if one or

check program as a means of demonstrating accuracy. - -
Note 7—Samples like hydrocarbons from petrochemical processmore of the values is suspect and should be rejected.

streams can degrade with time unless careful sampling and sample storagg Simple Procedure to Develop a Feasibility
procedures are followed. It is critical that the composition of samples™ " Calibration

taken for laboratory or at-line infrared analysis, or for laboratory mea-
surement of the reference data be representative of the process at the timel0.1 For new applications, it is generally not known

the samples are taken, and that composition is maintained during storaggnether an adequate IR multivariate model can be developed.
and transport of the samples either to the analyzer or to the laboratoryy, this case, feasibility studies can be performed to determine

Sampling should be done in accordance with methods like Practice . . .
D 1265 and D 4057, or Practice D 4177, whichever are applicablt-z?sf there is a relationship between the IR spectra and the

Whenever possible, sample storage for extended time periods is n&omponent/pro_p_erty of mteres_t, and Whether a mOd_e! ) of
recommended because of the likelihood of samples degrading with time iddequate precision could possibly be built. If the feasibility
spite of sampling precautions taken. Degradation of samples can causalibration is successful, then it can be expanded and validated.
changes in the spectra measured by the analyzer and thus in the valuasfeasibility calibration involves the following steps:
estimated, and in the property or quality measured by the reference 10.1.1 Approximately 30 to 50 samples are collected cov-
method. ering the entire range for the constituent/property of interest.

9.4 If the reference method used to obtain reference valueSare should be exercised to avoid intercorrelations among
for the multivariate calibration is an established ASTM major constituents unless such intercorrelations always exist in
method, then repeatability and reproducibility data are inthe materials being analyzed. The range in the concentration/
cluded in the method. In this case, it is only necessary tgroperty should be preferably five times, but not less than three
demonstrate that the reference measurement is being practicéthes, the standard deviation of the reproducibility
in accordance with the procedure described in the method, an@eproducibility/2.77) of the reference analysis.
that the repeatability obtained is statistically comparable to that 10.1.2 When collecting spectral data on these samples,
published in the method. Data from established quality controbariations in particle size, sample presentation, and process
procedures can be used to demonstrate that the repeatability @nditions which are expected during analysis must be repro-
the reference method is within ASTM specifications. If suchduced. Multiple spectra of the same sample under different
data is not available, then repeatability data should be collectecbnditions can be employed if such variations in conditions are
on at least three of the samples that are to be used in thenticipated during analysis.
calibration. These samples should be chosen to span the rangel0.1.3 Reference analyses on these samples are conducted
of values over which the calibration is to be developed, onaising the accepted reference method. If the range for the
sample having a reference value in the bottom third of theeomponent/property is not at least five times the standard
range, one sample having a value in the middle third of theleviation of the reproducibility for the reference analysis, then
range, and one sample having a value in the upper third of thereplicate analyses should be conducted on each sample such
range. At least six reference measurements should be made that they /r times the range is preferably five times, but at least
each sample. The standard deviation among the measuremettisee times, the standard deviation of the reference analysis.
should be calculated and compared to that expected based oni0.1.4 A calibration model is developed using one or more
the published repeatability. of the mathematical techniques described in Sections 11 and

9.5 If the reference method to be used for the multivariatel2. The calibration model is preferably tested using cross-
calibration is an established ASTM method, and the samples tealidation methods such as SECV or PRESS (see 15.3.6).
be used in the calibration have been analyzed by a cooperati@ther statistics can also be used to judge the overall quality of
testing program (for example, octane values obtained fronthe calibration.
recognized exchange groups), then the reference values ob-10.1.5 If the SECV value obtained from the cross validation
tained by the cooperative testing program can be used directlguggests that a model of adequate precision can be built, then
and the standard deviations established by the cooperativglditional samples are collected to round out the calibration
testing program can be used as the estimate of the precision sét, and to serve as a validation set, spectra of these samples are
the reference data. collected, a final model is developed, and validated as de-

scribed in Sections 13, 14, and 15.
19Manual on Determining Precision Data for ASTM Methods on Petroleum 11. Data Preprocessing

Products and LubricantsAvailable from ASTM Headquarters. Request Research ) . .
Report RR: D02-1007. 11.1 Various types of data preprocessing algorithms can be
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applied to the spectral data prior to the development of a 12.1.2 The technique should be capable of providing statis-
multivariate calibration model. For example, numerical derivatics suitable for identifying if samples being analyzed are
tives of the spectra may be calculated using digital filteringoutside the range for which the model was developed; that is,
algorithms to remove varying baselines. Such filtering generwhen the estimated values represent extrapolation of the model
ally causes a significant decrease in the spectral signal-tdsee 16.3).

noise. _Dlglta_ll filters may also be employed to smooth data, Note 8—In the following derivations, matrices are indicated using
Improving SIQnQI ,to noise at the expense of.resolutlon. A,boldface capital letters, vectors are indicated using boldface lowercase
complete description of all possible preprocessing methods igters, and scalars are indicated using lowercase letters. Vectors are
beyond the scope of these practices. For the purpose of thesgiumn vectors, and their transposes are row vectors. ltalicized lowercase
practices, preprocessing of the spectral data can be used iflétters indicate matrix or vector dimensions.

produces a model which has acceptable precision and which 15 1 3 o\l jinear, multivariate techniques are designed to

passes the validation test described in Section 21. In additiogolve the same generic problem.nfcalibration spectra are
any spectral preprocessing method must be automated so asiQasured dtdiscrete wavelengths (or frequencies), therthe

provi_de an exactly r'epro.ducible result, 'and' must be appliecipectral data matrix, is defined as falny n matrix containing
consistently to all calibration spectra, validation spectra, and tthe spectra (or some function of the spectra produced by

specira of unknowns which are to be analyzed. __preprocessing, as described in Section 9) as columns. Similarly
11.2 One type of preprocessing requires special mentloi is a vector of dimensiom by 1 containing the reference

Mean-centering refers to a procedure n which the average Qlaiues for the calibration samples. The object of the linear,

the calibration spectra (average absorption over the calibratio ultivariate modeling is to calculate a prediction vegpoof

spectra as a function of wavelength or frequency) is calculateg . ansionf by 1 that solves Eq 1:

and subtracted from the spectra of the individual calibration '

samples prior to the development of the model. The average y=Xp+e 1)

reference value among the calibration samples is also calcyyhere X! is the transpose of the matriX obtained by
Iated, and subtracted from the individual reference values fornterchanging the rows and columnsXf The error vectorg,

the calibration samples. The model is then built on thes a vector of dimension by 1, that is the difference between
mean-centered data. If the spectral and reference value data af@ reference valueg and their estimates,
mean-centered prior to the development of the model, then: ywhere:
11.2.1 When an unknown sample is analyzed, the average o
spectrum for the calibration site must be subtracted from the y=Xp @
spectrum of the unknown prior to applying the mean-centered 12.1.4 The estimation of the prediction vecpois generally
model, and the average reference value for the calibration setlculated so as to minimize the sum of squares of the errors,
must be added to the estimate from the mean-centered model to to _ tont t
obtain the final estimate; and . _ de =1l =(y—Xp)ly- x p)_ (.3)
11.2.2 The degrees of freedom used in calculating théinceX is generally not a square matrix, it cannot be d|reqtly
standard error of calibration must be diminished by one tdnverted to solve Eq 3. Instead, the pseudo or generalized
account for the degree of freedom used in calculating théverse ofX, X", is calculated as:

average (see 15.2). Xy = (XXY) Xy = p (4)
12. Multivariate Calibration Mathematics wherep is the least square estimate of the prediction vegtor

12.1 Multivariate mathematical techniques are used to relatl Should be noted that, in applying Eq 1-4, it is assumed that
the absorbances measured for a setabration samplego the errors in the spectral data¥hare negligible comp_ared Fo
the reference values (property or component concentratiolfl® €ors in the reference data, and that there is a linear
values) obtained for this set of samples from a reference tegi€lationship between the component concentration or property
The object is to establish a multivariatelibration modelthat and the spectral data. If elth_er of these gssump'tlons is mcc_)rrect,
can be applied to the spectra of future, unknown, samples t(pe_n the linear models derived here will not yield an optimal
estimate values (property or component concentration values§stimate ofp.

Only linear multivariate techniques are described in these 12.1.5 In calculating the least square solution in Eq 4, it is
practices; that is, it is assumed that the property or componemrissumed that the individual error valuesédr{see Eq 1) are
concentration values can be modeled as a linear function of theormally distributed with common variance. This will be true
sample absorptions. Various nonlinear multivariate techniquei$ each of the individual reference values ynrepresents the
have been developed, but have generally not been as widetgsult of a single reference measurement, and if the repeatabil-
used as the following linear techniques. These practices are nity of the reference method is constant over the range of values
intended to compare or contrast among these techniques. Fory. If the values iny represent averages of more than one
the purpose of these practices, the suitability of any specificeference method determination, then the least square expres-
mathematical technique should be judged only on the followsion in Eq 4 is not applicable. if reference valueg;, i, Vis

ing two criteria: ...y are measured for calibration samp)eéhen a weighted

12.1.1 The technique should be capable of producing aegression can be employed. i is a diagonal matrix of
calibration model that can be validated as described in Sectiodimensionn by n containing ther;values for each of the
18; and calibration samples, then the weighted regression is given by:
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VRy=1RXp+e (5)  reference values should still be included in theector if they
(XRXY)IXRY = p ©) are available. The use o_f the average values will lead to better
estimates of the regression coefficients, but the model produced
where\/R indicates the diagonal matrix containing the squarewill not be the least squares minimum. Standard errors of
roots of ther;values, and is the vector containing the averages calibration calculated by the software will generally not be
of the r; reference values for each sample. If averages ofmeaningful in these cases since they are not expressed relative
multiple reference values are used ynand a weighted to a single reference measurement. Standard errors of calibra-
regression is used, special care must be taken to add back thén should be recalculated using the procedure described in
variance removed by calculating the average reference valu&section 11.
(see Section 11) so that the statistics for the model can be 12 2 4 The choice of the number of wavelengths (or fre-
compared to those for a single reference value determinatiogyencies)k, to use in multilinear regression is a critical factor
The specific method in which the weighting is applied depends, the model development. If too few wavelengths are used, a
on the specific multivariate mathematics that are employed. |ggg precise model will be developed. If too many wavelengths
12.1.6 For most cases, if the calibration spectra are collectegre used, colinearity among the absorption values at these
over an extended wavelength (or frequency) range, the numb#ravelengths may lead to an unstable model. The optimum
of individual absorption values per spectruinwill exceed the  number of wavelengths (or frequencies) for a model is related
number of calibration spectran. In this case, the matrices to the number of spectrally distinguishable components in the
(XX" and (XRX") are rank deficient and cannot be directly calibration spectra (see Section 15) and can generally only be
inverted. Even in cases whefe< n, colinearity among the determined by trial and error. As a rule, the number of
calibration spectra can caugéX') and (XRX") to be nearly ~wavelengths (or frequencies) used must be large enough to
singular (to have a determinant that is near zero), and the direproduce a model with the desired precision, but small enough
use of Eq 4 and Eq 6 can produce an unstable model, that itg produce a stable model that passes validation.
a model for which changes on the order of the spectral noise 12.2.5 The choice of specific wavelengths (or frequencies)
level produce significant changes in the estimated values. Ito include in a multilinear regression model is also a critical
order to solve Eq 4 and Eq 6, it is therefore necessary to redudactor in the model development. Several mathematical algo-
the dimensionality ofX so that a stable inverse can be rithms have been suggested for making this seledtory, 8,
calculated. The various linear, mathematical techniques used). Alternatively, selection may be based on prior knowledge of
for multivariate calibration are different means of reducing thea relationship between the absorptions measured and the
dimensionality ofX so as to be able to calculate stable inversesroperty or component being modeled. It is beyond the scope
of (XX") and (XRX") and the estimate. of these practices to compare alternative selection methods. An
12.2 Multilinear Regression Analysis adequate set of wavelengths (or frequencies) will, for the
12.2.1 In multilinear regression (MLR), a specific numberpurpose of these practices, be defined as a set that produces a
of wavelengths (or frequencie®),are chosen such thik< n. model with the desired precision that passes the validation test
A new matrixM of dimensionk by n is obtained fromX by  procedure described in Section 18.
extracting the columns frorK that correspond to the selected 12.3 Principal Components Regression (PCR)
wavelengths (or frequencies). The calibration equation then 12.3.1 Principal components regression (PCR) is based on
becomes: the singular value decomposition of the spectral data matrix.
y=Mb+e 7y  The singular value decomposition takes the form:

whereb is a vector of dimensiok by 1 containing the set of X =L3S (10)
regression coefficients defined at each of the chosen wave-12.3.1.1 The scores matrix§, is a n by n matrix that
lengths (or frequencies). The solution for the regression coefatisfies the relationship:

ficients is obtained as:

(MMY)™ My = b (8)

Ss=1 (11)
SX'X)S= A (12)
The estlmat[e gf the full prediction \{ectqr, is obtained frqm wherel is an by n identity matrix, andA is the matrix of
b by substituting the values frominto the corresponding eigenvalues ofX'X. The n by n matrix 3 is the matrix of

positions inp(corresponding to the selected wavelengths okingular values, that are the square roots of the eigenvalues,
frequencies), and setting all other elementp @forresponding that is:
to the wavelengths or frequencies that were eliminated in going

from X to M) to zero.

12.2.2 If a weighted regression is used, the corresponding
form for Eq 8 becomes:
(MRMY MRy =b 9)

12.2.3 Not all commercial software packages that imple-
ment MLR include options for weighted regressions. If MLR  12.3.1.3 The row vectors that make up the matrigesdL
models are developed with such packages, averages of multipdee orthonormal, that is, the dot product of the vector with itself

32 = A (13)

12.3.1.2 The loadings matrix,, is af by n matrix that
atisfies the relationships:

L'L =1 (14)
L'(XXHL = A (15)
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is 1, and the dot product with any other vector in the matrix isthe " calibration sample, then entering copies of the
0. spectrumx; into theX matrix, or weighting the spectrum by

Nore 9—in some implementations of PCR, the data matimay be 4/ will alter the loadings that are calculated. If the spectrum

decomposed as the product of only two matric@andL. EitherSor L X ',S only me‘f’lsured Once’ the uncertainty in the spectral
is then orthogonal but not orthonormal, and eitsi8 = A or LIL = A,  variables contributed by is no different from that for the other

) ) . n — 1 spectra. Weighting the spectrugnprior to the singular
12.3.1.4 Using the singular value decomposition, th&s e decomposition will tend to force noise characteristics of
pseudo inverse of the matri can be calculated as: x; into the loadings, adversely affecting the model. Weighting
Xt =ss71L! (16)  the scores during the calculation of the regression coefficients
ill properly account for the differences in the variance among
e components of thg vector. The weighted regression
equations become:

12.3.1.5 Using the pseudo inverse relationship in Eq 16, it i%’;/]
then possible to solve for the prediction vecporin practice,
however, the full inverse oKX as given in Eq 16 is not used,
since it contains information relating to the spectral noise in the VRYy=1/RSb +e (23)

calibration spectra. o o b= (SRS) RS,y (24)
12.3.2 When a principal components analysis is conducted . ,
12.3.4 Not all commercial software packages that imple-

on a matrixX containing the calibration spectra, the signals elud ; ; iahted . ¢
arising from the absorbances of the calibration sample compdl'€Nt PCR include options for weighted regressions. If PCR

nents generally account for the majority of the variancXjn models are developed With.SUCh. package;, averages of multiple
and are concentrated into the firktloading vectors, that reference values should still be included in theector if they

correspond to the larger eigenvalues. While the separation &re available. The use qf the average values will lead to better
signal and noise is seldom perfect, it is preferable to use onl stimates of the regression coefficients, but the model produced

the first k vectors in building a model. The singular value Wil not be the least squares minimum. Standard errors of
decomposition ofX is then written as: callbr:_atlon galculated by thg software will generally not be.
meaningful in these cases since they are not expressed relative
X =128+ L2, (17)  to a single reference measurement. Standard errors of calibra-
whereS, is an by k matrix containing the firsk columns ofS,  tion should be recalculated using the procedure described in
L, is af by k matrix containing the firsk columns ofL, S is  15.1.
ak by k diagonal matrix containing the fir&tsingular values, 12.3.5 As with wavelengths in multilinear regression, the
andS,, S,, andL, are the corresponding matrices containingchoice of the number of principal componerksto use in the
the lastn-k elements 05, L, andS. The pseudo inverse of regression is a critical factor in the model development. If too
is then approximated as: few principal components are used, a less precise model will be
X* = S (18) develope(_JI. _If too many prlnc_lpal componen_ts are used, noise
a -a characteristics of the calibration samples will be incorporated
12.3.2.1 The estimate for the prediction vectar,s then into the model leading to unstable estimations. The optimum
given as: number of principal components for a model is related to the
p =L 'Sy (19) number of spectrally distirjguishable components in the cali-
) bration spectra (see Section 15), and can generally only be
12.3.2.2 Alternatively, the scoress, may be regressed determined by trial and error. As a rule, the number of principal
against the reference valugs, to obtain a set of regression components used must be large enough to produce a model

roeeensh with the desired precision, but small enough to produce a stable
y=sSbre (200  model that passes validation.
b= (SS) 'Sy = Sy (21) 12.4 Partial Least Squares (PLS)
12.3.2.3 Various stepwise regression algorittftres 11, 12) Note 10—The term PLS has been used to describe various mathemati-

may be used to test which of the principal components (whic cal algorithms. The version described here is a specific representation of
y u whi princip p WNICHLe pLs-1 algorithm, and deals with only one set of reference values at a

columns in the scores matrig) show a statistically significant {ime pLS-2 or multiblock PLS algorithms exist that can be used for the
correlation to the reference valuesyinCoefficients (elements  simultaneous calibration of multiple components or concentrations, or
of b) for principal components that do not show a statisticallyboth, but these algorithms are less well established than PLS-1 and are not
significant correlation may be set to zero. The estimate for thécluded in these practices. Various descriptions of the PLS-1 algorithm

prediction vector then becomes: have been published 3, 14, 15, 16, 17, 18, 19, 2@&any of which differ
slightly in the actual computational steps. In implementing the PLS-1
p=LsS"b (22) algorithm, a choice must be made as to which, if either, of the scores or

1233 Ifth f ltiol f t loadings vectors are to be normalized. In the following derivation, the
o € average ol muitiple rererence measurements |§cores vectors were normalized. If neither vector is normalized, or if the

used in they vector, then a weighted regression should be usegadings vector is normalized instead of the scores vector, a different

in calculating the prediction vector. The weighting is prefer-expression will be obtained for the prediction vector. Differences in the

ably applied to the scores in Eq 20 and Eq 21, and the spectrgrivations should not result in differences in the numerical values

in X are not weighted prior to the singular value decomposi.obtained for the prediction vector, nor in estimates based on it.

tion. 12.4.1 Like PCR, PLS involves the decomposition of the
12.3.3.1 Ifr; individual reference values are measured forspectral data matrixX, into the product of matrices. Unlike
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PCR whereX is first decomposed, and then regressed versusalues are measured, then weighting bétandy by 4 /R in

the reference values, in PLS, thierector is used in obtaining Step 1 of the PLS algorithm will over emphasize the spectral
the decomposition oX. The PLS proceeds by means of a variables contributed by;xPreferably, weighting is done only
series of steps, which are repeated in a loop. Each time the the calculation of the regression coefficients in Step 3. Eq
steps are repeated, a weighting veetp(of dimensionf by 1),  31and Eq 32 then become:

a scores vecta (of dimensiom by 1), a regression coefficient - -

b, (a scalar), and a loadings veclpfof dimensionf by 1) are VRY=V/Rép +e (40)

calculated. The subscriptindicates the number of times the b = (3'R§) '§'RY (41)

entire loop has been executed, and is initially 1. 12.4.2.1 The other steps in the algorithm proceed un-
12.4.1.1 Step +—Calculation of a weighting vector of di- changed.

mensionf by 1, w;: 12.4.3 Not all commercial software packages that imple-

t_ ot ment PLS include options for weighted regressions. If PLS
X'=yw +Z (25) . .
T models are developed with such packages, averages of multiple
Wi = Xy (26)  reference values should still be included in fheector if they
12.4.1.2 Step 2-Scaling the weight vectol; and calcula- are available. The use of the average values will lead to better
tion of a normalized scores vect, of dimensionn by 1: estimates of the regression coefficients, but the model produced
will not be the least squares minimum. Standard errors of

t_ oat
X=switz @n calibration calculated by the software will generally not be
s=X'W, (28)  meaningful in these cases since they are not expressed relative
W, = W/(89 (29) to asingle reference measurement. Standard errors of calibra-
o tion should be recalculated using the procedure described in
§=9(%y B0) 152

12.4.1.3Step 3—Regressing the scores vector against th

e N
reference values to obtain a regression coefficignt, 13. Estimation of Values from Spectra

13.1 Ifx (anf by 1 vector) is the spectrum of a sample, then

y=Shte D) y (a scalar), the estimated component concentration or property
b = 8y (32)  value, is given by:
12.4.1.4Step 4—Calculation of a loading vectorl; of g=x'p (42)
dimensionf by 1: wherep is the prediction vector obtained from the multivariate
X=1§+z (33)  calibration. The expression in Eq 42 involves only the dot
I = X8 (34) product of two vectors to obtain the estimated value; it has the
) ] advantage of being computationally simple. However, alterna-
12.4.1.5 Step 5—Calculation of the residuals: tive computations are often employed in obtainingigice they
Z =X — I8 (35)  provide additional parameters required to calculate the uncer-
R tainty in the estimation as well as whether or not the estimation
&=y~ b§ (36) s being made by interpolation or extrapolation of the calibra-

12.4.1.6 For subsequent times through the loop, the matrition model.

X is replaced with the residuals mati_, from the previous 132 Estimations by MLR-For MLR, the absorbance val-
loop, and they vector is replaced with the residuals veatph.  yes inx that correspond to the wavelengths (or frequencies)
The loop is repeatektimes to obtairk weighting, scores, and chosen in the calibration are extracted to form a ventofof
loading vectors, and regression coefficients. The overall dimensionk by 1). The estimaté js then obtained as the dot

expression for the results is then: product of the vectom with the vector of regression coeffi-
X=LS'+2 (37)  cients,b:
y=Sb+e (38) y=m'b (43)
whereS is then by k matrix containing thé& as rowsL is the 13.3 Estimations by PCR
f by k matrix containing thd; as individual rows,Z is the 13.3.1 For PCR, the vectoris first decomposed:
residual from the spectral data matrix, aads the residual o= gt (44)
from the estimation of the reference values. The estimate of the e
prediction vector is then given by: §=xL3 (45)
p=L(LL) " (39) 13.3.2 The estimated scoreés(a k by 1 vector), are then

] _ ] multiplied by the regression coefficients obtained from the
12.4.2 1f the values in the vectgr contain the average of cajibration to obtairy

multiple reference measurements, then a weighted regression

should be employed in developing the model. Unfortunately, y=28b (46)
for PLS, development of an appropriate weighting scheme is 13.4 Estimations by PLS
complicated by the use gfin the decomposition oX. If the 13.4.1 For PLS, the vectoaris first decomposed in steps. Eq

spectrum x corresponds to a sample for which reference 47 and Eq 48 are repeated for each latent varialiiehe PLS

10
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model. After the first cycle through Eq 47and Eq #8andx calibration is sometimes referred to as the standard error of estimate

are replaced witlz,_,' andz_, from the previous cycle. (SEB).
8 = xw, 47 Note 11—If a constant term is included in a MLR regression, or in the
: regression of PCR scores against concentrations or properties, then
z=x—18§ (48) d=n-k-1, since one degree of freedom is associated with the constant.

. N Care must be exercised in using a constant. In the case where neat samples
13.4.2 The estimated scores(a k by 1 vector), are then are analyzed and the samples are run in fixed pathlength cells, the volume

multiplied by the regression coefficients obtained from thefactions of all components are constrained to sum to unity. Inclusion of
calibration to obtairn"y a constant under these conditions can result in near singular matrices, and
N unstable models.
y=2%8b (49)

Note 12—For surrogate calibrations, there is no a priori relationship
14. p = . between the SEC calculated based on the simple gravimetric mixtures and
. Post Processing the error level expected for application of the model for analysis of actual

14.1 Several multivariate methods involve some post prosamples. It is recommended that such standard errors be subscripted as
cessing of the estimates from the multivariate model. The mostEGurrogate
common example is for mean-centered models (see Section15.2.3 The standard error of calibration is used in estimating
11), where the average reference value for the calibration sefte expected agreement between values estimated using the
must be added to the initial estimate from the model to obtairzalibration models and values that would be measured by the
the final estimate. A model can be developed to estimateeference method (see Section 9). Some care must be applied in
changes in the pathlength of the cell used to contain the sampigterpreting SEC if the values used i are not single
for analysis, and the estimated concentrations or propertyleterminations by the reference method. If the valueg fior
values can be scaled based on the results of the pathleng#dividual samples represent the average of multiple reference
estimate. measurements, then the SEC calculated from Eq 51 is not on a
14.2 A complete description of possible post-processinger reference measurement basis. For example, if all values in
algorithms is beyond the scope of these practices. Posi are the average of three reference measurements, then the
processing can be employed if it provides a model withSEC calculated using Eq 51 can only be used to estimate the
adequate precision, passes the validation test described éxpected agreement between the infrared estimate and the
Section 18, and provided that the post-processing algorithm iaverage of three reference measurements.
automated, so as to provide exactly reproducible results, and is 15.2.3.1 If multiple reference values are used for some or all
applied uniformly to the results from calibration, validation, of the calibration samples, it is possible to calculate an SEC

and analyses. value that is on a per reference measurement basisidfthe
spectrum of thé™ calibration sample, ang, yi,. . . Y, arer;
15. Statistics Used in Evaluating and Optimizing independently measured reference values for that sample, then
Calibration Models the weighted regression Eq 9 for MLR, 23 and 24 for PCR, and

15.1 Various statistics are used to evaluate and optimize th#0 and 41 for PLS are preferably used in calculating the
performance of multivariate calibration models. These statisPrediction vectors. Whether or not a weighted regression is
tics are generally applied only to data in the calibration set€mployed, the variance removed by calculating the averages
they should not be confused with the statistics that are used f®ust be calculated as:
validate the model (Section 18), that are calculated based on a ) noo .,
separately analyzed validation set. 0 g = 21].;1 ¥ = % (52)

15.2 Standard Error of Calibration . _where the first summation runs over all the=1 to n
15.2.1 If § are the values est_lmated for the calibration -5jibration samples, the second summation runs over thé
samples, ang are the corresponding reference values, #en (o reference values for th&' sample, ang; is the average of

is the calibration error vector defined by: the r; reference values for thé" sample. In this case, the
e=y-y (50)  standard error of calibration is calculated as:
The prediction errors include contributions from errors in the €Re + 0%
reference values for the calibration set, spectral errors in the SEC= —a, (53)

spectra of the calibration set, and model errors (using wrong
number of variables, nonlinear relationships, and so forth).
15.2.2 The standard error of calibration (SEC), is defined a

15.2.3.2 The degrees of freedom for the weighted regres-
sion, d,, are the total number of individual reference values
Smeasured for all the samples, minus the number of variables in
de the model:

SEC= \/; (51) )
d is the number of degrees of freedom in the calibration modek d, =[2 r]—k (54)
typically equal ton — k, wheren is the number of calibration samples, and =1
kis the number of variables (wavelengths in MLR, principal components, 15.2.3.3 If the spectral and reference data are mean centered

or PLS latent variables) used in the model. If the spectral data an‘#)rior to the development of the calibration, then:
reference values are mean centered prior to the development of the .

calibration model (see Section 11), thér n — k — |, since one degree of d, =[S r]-k-1 (55)
freedom is removed in calculating the averages. The standard error of w =T

11
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The SEC calculated in this fashion will be on a per referencand cannot contribute a variable to the multivariate model.
measurement basis. Clearly, for complex mixtures, the number of detectable,
15.2.3.4 An alternative expression for SEC in the casshectrally distinguishable components (pr functionalities) is
where multiple reference values per sample are used is givedften less than the number of real chemical components.
by: 15.3.3 Estimating the maximum number of detectable, spec-
trally distinguishable components among a set of calibration
spectra requires knowledge of the spectral noise level. The
(56)  spectral noise level can be estimated from replicate measure-
ments conducted on a single sample. For instance, if replicate
Note 13—In Eq 53, thee vector represents the difference between thespectra are conducted on one sample, a PCR analysis of the
estimated value and the reference value, where the reference value may§gectra can be conducted. Since the spectra all represent the
the average of more than one reference measurement. The matrix notatigl e material, only one principal component should be present

implies the sum of the weighted squares of the differences, where tth the spectral data. The percentage of the variance due to the
square of the difference is weighted by the number of reference values thgt ’

were included in the average. Alternatively, the square of the differencdifSt Principal component (the first eigenvalue d'V.'dEd by the
between the estimated value and each individual reference value can §&m of all the eigenvalues) can be calculated. This percentage
computed and summed as in Eq 56, in which case the variance termis zeed the variance can be used to estimate a cutoff point for
since the average reference values are not used in the calculation.  determining how many principal components to include in a

15.2.4 The standard error of calibration (SEC) is the stanodel, namely, the sum of the filseigenvalues divided by the
dard deviation for the differences between reference and IRUM of all the eigenvalues should be of the same order as the
estimated values for samples within the calibration set. It is autoff. Similar calculations can be performed using PLS. For
indication of the total residual error due to the particularMLRv tests for colinearity among the absorbances at candidate
regression equation to which it applies. The SEC will generallyvavelengths are generally conducted as part of the wavelength
decrease when the number of independent variables used in thglection procedure. For instance, if a model is built using
model increases, indicating that increasing the number of term¥avelengths for which the absorbances are linearly indepen-
will allow more variation in the data to be explained, or dent, the linear dependence of all candidate wavelengths for

“fitted”. The SEC statistic is a useful estimate of the theoreticalclusion in a model based ok +1 wavelengths can be
“best” accuracy obtainable for a specified set of variables usegnecked. If the absorbances at all candidate wavelengths can be
to develop a calibration model. fit as a linear combination of th& wavelengths already

15.3 Optimizing the Number of Variables in a Model selected to within the spectral noise level, thknis the
15.3.1 Determining how many variables (wavelengths inmaximum number of linearly independent wavelengths upon

MLR, principal components, or PLS latent variables) to use inWhICh a model can be based.

a model is a critical step in the model development. Unfortu- 15.3.4 Models can be built using fewer tharvariables,
nately, there are no hard and fast rules upon which to make thRrovided that such models exhibit adequate precision and pass
determination. In general, if too few variables are used, a les¥alidation.
precise model will result. If too many variables are used, the 15.3.5 Knowledge of the precision of the reference method
estimates from the model may be unstable, that is, smalb also useful in determining how many variables to include in
changes in the spectrum on the order of the spectral noise may multivariate model. As discussed, the agreement between
produce statistically significant changes in the estimates.  infrared estimated values and reference values can never
15.3.2 The maximum number of variables that should beexceed the repeatability of the reference method, since, even if
used in developing a multivariate calibration modk),is the infrared estimated the true value, the measure of the
related to the number of detectable, spectrally distinguishablagreement would be limited by the repeatability of the refer-
components (or functionalities) that are present in the calibra€nce method. Comparison of the standard error of calibration
tion set. Components (or functionalities) are spectrally distin{Calculated on the basis of a single reference measurement)
guishable if they give rise to absorptions which are not linearlyagainst the standard deviation calculated from the reference
correlated among the calibration samples, and if the change ifethod repeatability provides an indication of the maximum
the absorptions among the calibration spectra is larger than tH@imber of variables to include in a model. Standard errors of
spectral noise. If, within a calibration set, the concentrations o€alibration that are lower than the standard deviation for the
components are linearly correlated, then the absorptions due fgference method indicate overfitting of the data.
these components will also be linearly correlated. Even if these 15.3.6 Cross validation procedures are also used to estimate
components have isolated absorption features, they will not bihe optimum number of variables that should be included in a
spectrally distinguishable to the multivariate mathematics, andhodel. In cross validation, one or more sample spectra are
will contribute at most one variable to the multivariate model.removed from the data matrix, their corresponding reference
If the concentrations of the components are nearly correlatedialues are removed from the reference value vector, and a
such that the absorptions due to the components are colinearnwodel is built on the remaining samples. The model is then
within the spectral noise, then the components are not speased to estimate the value for the samples that were left out.
trally distinguishable. If components are present at sufficientlyThis process is repeated until each sample has been left out
low levels so that the component absorption is below theonce. The error from the cross validati@q,, is then calculated
spectral noise, then the component is not spectrally detectabées
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&= Yo Y (57) 15.4 Confidence Limits for an Estimated Value
whereY,, is the vector containing the cross validation esti- 15.4.1 The confidence limits for a value estimated by a
mates. A PRESS value can then be calculated as: multivariate model is given by:
t " , t-SECA/ITh (60)
PRESS® Goffor = i;(yw‘ R (58) where t is the student’s t value for the number of degrees of

15.3.6.1 A standard error of cross validation (SECV) isfreedom in the model, arldis the leverage statistic defined in

calculated as: 16.2. If t values are chosen from Table Al1.3 for the 95 %
probability level, then for a validated model, a single value
SECV = /PRnESS (s9) measured by the reference method is expected to fall within a

range from of y-t- SEC A/1 + htoy+t- SEC - f\/1 + h
15.3.6.2 PRESS or SECV values can be calculated as far 95 % of samples analyzed, provided that the analysis is an

function of the number of variables used in the model. Thenterpolation of the model. The confidence limits for an
procedure would normally start by using one variable as &stimated value in Eq 60 are sometimes referred to as the
model while leaving a single sample out of the calibration setconfidence bands or confidence intervals for the estimate.
After a calibration is developed using the remaining samples, 15 4 5 The yse of Eq 60 to estimate the confidence limits is

the algorithm predicts the excluded sample and records thgmy an approximation since it ignores any uncertainty, ithe

difference between the reference and estimated values. Thisg o) data. The confidence limits in Eq 60 derive from the
procedure Is iterated (repeated) for the entire §ample set, a sumption that the errors inare negligible compared to the
the PRESS (or SECV) value for the one variable model i rrors iny, and that the spectrumx can be completely

reported. The procedure then adds another variable and repegy

h h d i h h d scribed by the variables used in the model. If the errors in the
the process. The PRESS procedure will stop when the predegq e qra) gata are not negligible, or if the spectnarcontains

ignated number of factors is reached (say 10 to 20 maximum)pqqhiions due to components that were not present in the

The calibration mod.el with the smallest PRESS .(SECV) can b alibration set, the confidence limits in Eq 60 underestimate the
selected as the optimum model for the calibration set used.

S _potential error in the estimate. Eq 60 is expected to give a
more than one model have similar PRESS values, the one wiffya5onaple approximation for the confidence limits on an
fewer variables will generally be chosen. estimated value for samples that are interpolations of the model
15.3.6.3 Aplot of PRESS (SECV) valugsdxis) versus the (see 16.4).
number of variablesxfaxis) is often used to determine the
minimum PRESS corresponding with the optimum number ofy,
variables in the calibration model. A minimum in the function
can be taken as an indication of the maximum number oE
variables to be used. If no minimum occurs, the first point at
which the PRESS or SECV reaches a more or less constant
level can provide an indication of the maximum number of L .
variables to include. Comparisons of SECV against the stan- 15513 F—te_st statistic (F for regressm_n), .
dard deviation for the reference method repeatability are again 1°-2-1-4 Partial F orttest for a regression coefficient,
useful, SECVs significantly lower than the standard deviation 1°-5:1.5 Standard error of calibration (standard error of
suggesting overfitting of the data. estimate), and
15.3.6.4 An excellent description of the cross validation ig'g.;.6AItBhlgigcr?rr:”leacr:?/do?ttigizr?e:tzor:ave been more com
rocedure (algorithm) is found in page 325 of REf). - )
IoCalcul:;xtion(ofg PRES)S and SECV Fz:a?] be compﬁatic))nall)monly applied to MLR models, some are equally applicable to

intensive and can result in the use of substantial computer tim&CR and PLS models. Details on these tests and related
statistical terms are included in Annex A2. Further explana-

Note 14—The exact values of PRESS and SECV calculated willtions for these statistical tests can be found in Annex A2 and
depend on how many samples are left out during each cycle of the Crossayeral reference@2, 23)

validation. If more than one sample is left out during a cycle, then the
PRESS and SECV will depend on the combination of samples left out 6. Outlier Statisti
Cross validation routines that leave out multiple spectra during each cycl(j,x - Luther stalisics

require less computation time than routines that leave out one spectrum at 16.1 During calibration, outlier statistics are applied to
a time. However, the resul_ts of such routines are less comparable afldentify samples that have unusually high leverage on the
reproducible than those which leave out one spectrum at a time. multivariate regression. During analysis, outlier statistics are
15.3.7 The above-mentioned methods for estimating themployed to detect samples which represent an extrapolation
number of variables to use in a model are intended only asf the model.
guidelines. None of the methods can be relied upon to always 16.2 Leverage Statistie-The leverage statistib, is a scalar
produce a stable model. The ultimate test for the number ofmeasure of where the spectral veckolies within the multi-
variables is whether or not the model can be validated asariate parameter space used in the model. The leverage
described below. The number of variables used in a model mustatistic is used in detecting outliers during the calibration, in
ultimately be chosen to produce a model with the desiredletecting extrapolation of the model during analyses, and in
precision that can be validated. estimating the uncertainty on an estimated value.

15.5 Additional Statistics for Evaluating the Mathematical
odels

15.5.1 A variety of statistical tests are in use for evaluating
alibration models. Some tests that are in common use include:
15.5.1.1 Coefficient of multiple determination,

15.5.1.2 Correlation coefficient,
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Note 15—Commercial software packages use numerous variations on 16.3.2 High-leverage samples are identified based on the
the leverage statistic. The leverage statistic is sometimes referred to as tl@/erage statistich. For all types of linear calibrations de-
hat matrix(24), or as the Mahalanobis Distand®? (although it is actually scribed above, the average leverage statistic for all of the

the square of the distance). Various commercial software packages may._,. . .
useD instead o2, Some software packages may sdaler D?) by n (or Llibration sample spectra has a valuektf wherek is the

n - 1 if mean-centered), to obtain a statistic that is independent of théumber of variables in the regression (the number of wave-
number of calibration samples. If this scaled statistic is further multipliedl€ngths in MLR, the number of principal components, or the
by (n—k-1)/nk, a statistic that has af distribution is obtaineq25). The ~ number of PLS latent variables), andis the number of
leverage statistich, is preferred here since it is easily related to the calibration samples. On average, each sample contritiies
number of samples and variables. Model developers should attempt igf the spectral variables. For samples that have 3k/n, the
verify exactly what is being calculated. Both mean-centered and not meagample spectrum is contributing a significant fraction to the
centered definitions foh exist, with the mean-centered approach pre- L . .
ferred. Regardless of whether mean centering of data is performed, ti%eflmtl_on of one _Of the S_pectl_’al Va_r'ables and to the_ regression
statistic designatet has valid utility for outlier detection. coefficient associated with this variable. Samples With3k/n

16.2.1 Ifx is a spectral vector (dimensidrby 1) andX is should be eliminated from the calibration set in the develop-
the matrix of calibration spectra (of dimensiomy f), then the ~Ment of the model.

leverage statistic is defined as: Note 17—If the leverage statistic is scaled as describ@®), anf test
h = x (XXY)*x ©61) can be employed for outlier detection.

16.2.2 For a mean-centered calibratioandX in Eq 61 are 16.3.3 If calibration spectra with >3k/n are eliminated
replaced byx — X andX - X respectively. from the cahbratlo.n. set, and the model is rebuﬂt, it is not
16.2.3 If a weighted regression is used, the expression fdfhcommon for addlthnal spectra W|.th>3k/n to be '|dent|f|ed
the leverage statistic becomes: for the new model. This occurrence is most likely if removal of

. - samples reduces but can also be caused merely by scaling
h =X (XRX)"x (62)  changes to the multivariate space induced by changes in

16.2.4 In MLR, ifm is the vector (dimensiok by 1) of the ~ When repetitive application of thekf rule continues to
selected absorbance values obtained from a spectral wector identify outliers, the outlier test is said to “snowball.” If
and M is the matrix of selected absorbance values for thé'snowballing” occurs, it may indicate some problem with the
calibration samples, then the leverage statistic is defined as:structure of the spectral data set. The variable space of the

h= m -1 model should be examined for unusual distributions or clus-
=m (MM") 'm (63) terings

16'2'5, Similarly, if a We'ght?d, regression is used, the 15331 |fthe following sequence occurs during the devel-
expression for the leverage statistic becomes: opment of a model, thek outlier test can be relaxedi)(a

h=m'(MRM Y 'm (64)  first model is built on an initial calibration set)(calibration

16.2.6 In PCR and PLS, the leverage statistic for a samplSPectra witth >3k/nare eliminated from the calibration se) (

with spectrumx is obtained by substituting the decompositions® S€cond model using the same numkgvariables is built on

for PCR, or for PLS, into Eq 61. The statistic is expressed as¢ subset of calibration spectra, an) (alibration spectra
with h >3k/n are identified for the second model. The second

h=ss (65)  model should be used providing that no calibration samples
Note 16—If the scores from the PCR or PLS model are not normalized1aveh greater than 0.5.
then the form of Eq 65 becom&?= ¢ (S'S)™1s 16.3.3.2 If Q) a first model is built on an initial calibration
16.2.7 If a weighted PCR or PLS regression is used, th&et, @) calibration spectra with >3k/nare eliminated from the
expression for the leverage statistic becomes calibration set, and3] a second model using fewer variables is
h=< (SRS s (66) built on the subset (_)f calibration spectra, tHdr@outller test
should not automatically be relaxed. Instead, the first model
16.3 Outlier Detection During Calibration should be rebuilt using the lower number of variables and the
16.3.1 Two types of outliers can be identified during thesequence in 16.3.3.1 should be applied to the new model.
calibration procedures. The first type of outlier is a sample that 1634 A second type of outlier is one for which the
represents an extreme composition relative to the remainder @ktimated valué yiiffers by a statistically significant amount
the calibration set. These samples have very high leverage Gpym the value from the reference method, y. Such outliers can
the regression results; that is, they are largely responsible f¢§a detected based on studentized residuals,. itf the differ-
the determination of at least one of the regression coefficienénce petween the estimated valyayd the reference value y
values. Generally, there is insufficient data in the calibration sefor the i™ sample in the calibration set, amgis the leverage
to statistically determine the accuracy of reference valueggaistic for that sample, the studentized residuals forithe
associated with these high leverage samples. Their inclusion iggmple are given by:
the calibration may lead to erroneous estimations of similar
samples if the reference value for the high leverage sample is t = 8
in error. The second type of outlier is one for which the SECy/1-h
estimated value differs from the reference value by a statisti- 16.3.4.1 The studentized residuals should be normally dis-
cally significant amount. Such outliers indicate either an errotributed with common variance. The studentized residuals
in the reference measurement or a failure of the model. value can be compared f t distribution value fon -k (or

(67)
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n -k — 1 if mean centered) degrees of freedom, to determineomparing an estimate of the unknown spectrum derived from
the probability that the error in the estimate fits the expectedhe model to the measured spectrum of the unknown.
distribution. If not, the sample should be considered an outlier. 16.4.4.1 For PCR, an estimate of the spectrum of the
A more detailed discussion of studentized residuals can benknown can be calculated as:
found in Refs26-27 U atort

16.3.5 If a sample is identified as an outlier based on . X = s o (68)
studentized residuals or other similar tests, then the referend¥here thes is the vector of scores. Similarly for PLS:
value may be in error. When possible, the reference test should Xt = gLt (69)

be re_:peated to determine a correct value for the sa_lmpl here thes is the vector of scores. The difference between the
(multiple tests are recommended). If the reference value is ng

in error, then the large studentized residuals may indicate estimated spectrum and the actual spectrum can be calculated

basic failure in the model. For estimation of component

concentrations, there may be sufficient spectral interferences to r=x-=-x (70)

preclude accurate estimation of the component for this class of 16.4.4.2 The root mean square spectral residuals (RMSSR)

samples. For property estimation, some component that hasfar the spectrum can then be calculated as:

significant effect on the property may not be detected. Remov- -

ing outliers of this type without evidence of error in the RMSSR= ; (71)

reference value should be avoided whenever possible, since

these samples may provide the only indication that the model Note 19—Some commercial software packages may calculate other

is not applicable to a certain class of materials. statistics related to RMSSR, or may call RMSSR by some other name. The
16.4 Interpolation and Extrapolation of the Model During _mo_del developer should verif_y what statistics are used in the software to

Analysis !nd_lcate how well the model fits a spectrum being a_malyzed. The RMSSR

. . . is intended as an example of how such a calculation can be done. Other

16.4.1 The spectra of the calibration samples define a set Qjyjjar statistics can be used.

variables that are used in the calibration of the multivariate
model. If, when unknown samples are analyzed, the variables 16.4.5 The RMSSR values can be calculated for each of the

calculated from the spectrum of the unknown sample lie Withincalibra}tion samples. One of the calibrat?on sampleg will exhibit
the range of the variables for the calibration, the estimate@ Maximum RMSSR, RMSSR, Assuming that outliers have
value for the unknown sample is obtained by interpolation of?€€n removed prior to the development of the calibration
the model. If the variables for the unknown sample are outsid80del, RMSSR,,, can be used to calculate a cutoff above
the range of the variables in the calibration model, the estimat¥/Nich RMSSR values for unknown spectra are to be taken as
represents an extrapolation of the model. evidence of extrapolation of the model. ,

16.4.2 Two types of extrapolation are possible. First, the 16-4.6 Ingeneral, the RMSGR, cannot be used directly to
sample may contain the same components as the calibratigst the cutoff for indicating extrapolation. For PCR and PLS

samples, but at concentration ranges that are outside the rang88dels, some of the spectral noise characteristics of the
in the calibration set. Second, the sample may contain Comp&_alllbratlon spectra are always incorporated into the spgctral
nents that were not present in the calibration samples. variables. The RMSSR values calculated for spectra used in the

16.4.3 The leverage statistie, provides a useful indication calibration will thus generally be lower than corresponding

of the first type of extrapolation. For the calibration set, onevalues calculated for spectra of the same samples which are not

sample will have a maximum leverage statisti. This is used in the model development. For estimating a suitable cutoff
X

the most extreme sample in the calibration set, in that, it is tthSS_;R value to serve as an indication of extrapolation, the
farthest from the center of the space defined by the spectr&f!loWing procedure is recommended.
variables. If the leverage statistic for an unknown sample is 16-4.6.1 Replicate spectral measurements (at least seven) of

greater thanh,.,, then the estimate for the sample clearly several (at least three) of the calibration samples should be

represents an extrapolation of the model. Providing that outlifade. The replicate measurements should include all steps in

ers have been eliminated during the calibration, the distributiofi?® measurement procedure (for example, background spec-
of h should be representative of the calibration model, kg~ rum collection, loading of the sample, and measurement of the

can be used as an indication of extrapolation. spectrum). _ _
16.4.6.2 One spectrum from the set is to be used in the

Nore 18—Comparison of the spectral variables for an unknown againsgjeyelopment of the calibration model. The RMSSR values for

the range of ee_tch spectral_ varlable. in the calibration model could be ‘donf e spectra used in the calibration are calculated. The RMSS-
and extrapolation of any single variable could be taken as extrapolation (i) is the value for the spectrum of Sample

the model. The use of the leverage statistic as an indicator of extrapolationca! .. P . P .
may not detect certain spectra which are slight extrapolations on one or 16-4.6.3 The remaining replicate spectra are analyzed using

more spectral variables; however, significant extrapolation of any ondhe calibration model, and RMSSR values are calculated and

variable will result in a high leverage statistic, and thus detection ofaveraged for each sample. The RMSSIR(i) is the average

extrapolation. Use of individual variables in tests for extrapolation is notRMSSR for the replicate spectrum of Sample

recommen_ded since it can unduly restrict the range of samples to which 15 4.6.4 The ratios of the RMSSR values from the analyses

the model is applicable. to those from the calibration are calculated and averaged, and
16.4.4 The second type of extrapolation of the modelRMSSR, ., is multiplied by the average ratio to obtain the

namely, the presence of a new component, can be detected bytoff:
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RMSSana(i)] RMSSR, (72) sample spectra. A maximum NND value is determined. This
RMSSR,(i) > value represents the largest distance between calibration

16.4.6.5 If the RMSSR value for an unknown sample beings@mple spectra. . .
analyzed exceeds RMSSR,, then the analysis of the sample  16.4.8.5 During analysis, the NND value is calculated for
represents an extrapolation of the model. the unknown sample spectrum relative to the calibration
16.4.7 Statistics comparable to RMSSR cannot be calcspectra. If the calculated value_ is greater than the maximum
lated for multiple linear regression. The MLR is thus incapablgVND from 16.5.3, then the minimum distance between the
of detecting the second type of extrapolation, namely, thdrocess sample spectrum and the cahk_)ratu_an spectra is greater
presence of a new component that was not in the calibratiof'an the largest distance between calibration sample spectra,
samples. Care should be exercised when applying MLR irqhe_unknown sar_nple_spectrumfalls within a sparsely populated
systems where the calibration set used in the development &¢9ion of the calibration space. Such samples are referred to as
the MLR model may not represent the total range of samplé‘eéarest Neighbor Outliers.
compositions that will be encountered du_ring analyses._ln such7  selection of Calibration Samples
cases, MLR should be supplemented with other techniques to 171 For the devel f ltivari del ideal
determine if the sample being analyzed falls within the scope . '~ . or the deve Op”?e_m of a multivariate model, an idea
of the calibration. For example, outlier statistics from PCRC"]‘I'bratlon sample set will:

models developed on the same calibration set could be used fohﬂ'.l‘1 Contain samplgs which provide examples Of. all
this purpose. chemical components which are expected to be present in the

samples which are to be analyzed using the model, thereby
Note 20—For PLS models, residuals calculations such as RMSSR arensuring that analyses involve interpolation of the model;

not always a useful indicator of outliers. If, during calibration, a 17.1.2 Contain samples for which the range of variation in

significant percentage of the spectkalflock) variance due to signal is not the concentrations of the chemical components exceeds the

used in the model, then the model residuals used to calculate RMSSR L .
may contain significant contributions due to calibration sample componen[iange of variation expected for samples which are to be

absorptions. In such cases, RMSSRvalues calculated on the basis of analyzed using the model, thereby ensuring that analyses

such RMSSR,, values may be too large to detect model extrapolation dudnvolve interpolation of the model;

to new chemical components in samples being analyzed. 17.1.3 Contain samples for which the concentrations of
The procedure described in 15.3.3 can be used to estimate thehemical components are uniformly distributed over their total

percentage of the totaX-block variance that is due to signal. If the range of variation;

variance included in the model is significantly less than the signal 17.1.4 Contain a sufficient number of samples to statistically

variance, then the modeler may wish to supplement the PLS model Witlgi : : : :
a PCR model built on the same data. RMSSR statistics from the PC efine the relationships between the spectral variables and the

model are then used for outlier detection. The number of variables used iﬁomponent concentrations or properties to be modeled.

the PCR model should be sufficient to account for the signal variance. ~ 17.2 For simple mixtures, calibration samples can generally
be prepared to meet the criteria above. For complex mixtures,

16.4.8 Nearest Neighbor Distaneelf the calibration ,paining an ideal calibration set is difficult, if not impossible.
sample spectra form multiple clusters within the variablery,q giatistical tests that are used to detect outliers guard against

space, the spectrum of the unknown being analyzed can have gy, jjea| calibration sets. The RMSSR values detect when
D< less tharD<,,, yet fall into a relatively unpopulated portion samples being analyzed contain components that are not

of the calibration space. In this case, the sample being analyzedy,esented in the calibration set (violation of criterion 1

contains the same components as the calibration samples (si ove). Leverage statistics detect when samples being ana-

the sample is not a RMSSR outlier), but at combinations tha, ;e are outside the concentration ranges represented in the
are not represented in the calibration set. The spectrum of t

PP libration set (violation of criterion 2). Outlier detection
unknown does not belong to any of the calibration sampley,ving model development identifies components for which the

spectra clusters, and the results produced by application of the e of concentrations in the calibration set is not uniform
model may be invalid. Under these circumstances, it Ii

. . X violation of criterion 3).
desirable to employ a Nearest Neighbor Distance test to deteCt 17 3 The number of samples that are required to calibrate an
unknown samples that fall within voids in the calibration

space infrared multivariate model (see 17.1.4) depends on the com-

. . plexity of the samples being analyzed. If the samples to be
116.4.8.1 Nearest Neighbor Distance, NND, measures thgn|y7ed contain only a few components that vary in concen-
distance between the spectrum being analyzednd indi-  5ion, then there will be a small number of spectral variables,

vidual spectra in the calibration seq, and a relatively small calibration set is adequate to define the

RMSSR,,; = [2

NND = min[(x — x)' (XX (x — x;)] (73)  relationship between the variables and the concentrations or

16.4.8.2 For MLR, NND is calculated as properties. If a larger number of components vary _in the
samples to be analyzed, then a larger number of calibration

NND = min[(m — m)" (MM )~ *(m — m)] (74)  samples is required for the model development. Determining
16.4.8.3 For PCR and PLS (with orthogonal scores), NNDWhether or not a set of calibration samples is adequate can only
is calculated as be done after a model is developed and an estimate of the

) . number of spectral variables required for the model is made.
NND = min[(s - )’ (s — )] (75) 17.4 If a multivariate model is developed using three or
16.4.8.4 NND values are calculated for all the calibrationfewer variables, then the calibration set should contain a
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minimum of 24 samples after elimination of outliers. for which the model was developed; that is, the span and the
17.5 If a multivariate model is developed usikg(>3) standard deviation of the range of concentrations or property
variables, then the calibration set should contain a minimum o¥alues for the validation samples should be at least 95 % of the
6k spectra after elimination of outliers. If the model is meanspan and the standard deviation of the range of concentrations
centered, a minimum of B(+ 1) spectra should remain. or property values in the model, and the concentration or
Nore 21— is chosen to ensure at least 20 df in the model for PFOPEMNY values forth_e validation samples should be distributed
statistical testing, and to ensure that there is an adequate number 8p uniformly as possible across the range_; and .
samples to define the relationship between the spectral variables and the18.2.3.2 Span the range of spectral variables for which the
concentration or property values. model was developed; that is, if the range of a spectral variable
17.6 For some spectroscopic analyses, it is possible t# the calibration model is frona to b, and the standard
calibrate using gravimetrically or volumetrically prepared deviation of the spectral variable is, then the spectral
mixtures Wh|Ch Contain Significantly fewer Components thanvariables estimated for the Validation Samples Should cover at
the samples which will ultimately be analyzed. For these€ast 95 % of the range fromto b, and should be distributed
surrogate methods, the outlier statistics described herein a@$ uniformly as possible across the range such that the standard
not strictly appropriate since all actual samples are by definideviation in the spectral variables estimated for the validation
tion outliers relative to the simplified calibrations. Thus, Samples will be at least 95 % of
surrogate methods cannot strictly fulfill the requirements of 18.2.4 Determination of whether a validation set is adequate
this practice. Surrogate methods should, however, follow th&vill generally require that the set be analyzed so that the

requirements described herein for the number and range &Pectral variables for the set can be determined. Samples
calibration samples. whose analyses are extrapolations of the model should not be

18. Validation of a Multivariate Model included in_thg \{alidation set. If the vaIidatio_n_ set dogs not
' meet the criteria in 18.2.3.1 and 18.2.3.2, additional validation
18.1 Validation of an infrared multivariate model is accom- samples should be taken.
plished by applying the model for the analysis of a seof 18 3 validation Spectra Measurement and Analysis
validation samples, and statistically comparing the estimategpectra of validation samples should be collected using exactly
for these samples to known reference values. Validationhe same procedures as were used to collect spectra of the
requires thorough testing of the model to ensure that italipration samples. Reference values for the validation
performs up to the expectations derived from the calibration se§amples should be obtained using the same reference method

statistics. o as was used for the calibration samples. Spectra should be
18.2 Validation Sample Set analyzed using the multivariate model to produce estimates of
18.2.1 For the validation of a multivariate model, an idealthe component concentrations or properties, and the statistics

validation sample set will: described in Sections 18 and 19 should be calculated.

18.2.1.1 Contain samples that provide examples of all 18 4 validation Error
chemical components which are expected to be presentinthe1g 4.1 |f v (a vector of dimensions/ by one) are the

samples which are to be analyzed using the model; ~ ggtimates obtained by analysis of the spectra of/taidation
18.2.1.2 Contain samples for which the range of variation IRscamples, and are the corresponding values measured by the

the concentrations of the chemical components is comparabl@ference method, then the validation ereis given by:
to the range of variation expected for samples that are to be

analyzed using the model: e=v-v (76)
18.2.1.3 Contain samples for which the concentrations of 18.4.2 If multiple reference values are available for some of

chemical components are uniformly distributed over their totathe validation samples, then the average of the individual

range of variation; and reference measurements can be used,iand the variance
18.2.1.4 Contain a sufficient number of samples to statistiremoved by calculating the averages should be calculated using

cally test the relationships between the spectral variables ar@q 52.

the component concentrations or properties that were modeled. 18.5 Variance of the Validation Erree=The variance of the
18.2.2 For simple mixtures, validation samples can genererror of the validation measurements is calculated as:

ally be prepared to meet the criteria in 18.2.1.1-18.2.1.4. For v o

complex mixtures, obtaining an ideal validation set is difficult VAR, = €Re+ 05,= > > (vj — V)° (77)

if not impossible. e
18.2.3 The number of samples needed to validate an infravhereo?,,q is zero andR is an identity matrix if individual

red multivariate model depends on the complexity of thefeéference measurements are used.in

model. Only samples whose analyses are found to be interpo- 18.6 Standard Error of Validation

lations of the model should be used in the validation procedure. 18.6.1 The standard error of validation (SEV) is given by:

If five or fewer spectral variables are used in the model, then a

minimum of 20 interpolation samples is recommendedk #

5 spectral variables are used in the model, then a minimum of SEV=

4k interpolation samples should be used in the validation. In

addition, the validation samples should:
18.2.3.1 Span the range of concentrations or property values d, is the total number of reference values available fowvall

(78)
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validation samples. SEV is the standard deviation in theseCx /1 + D? to g+t X SECX \/1+ D? . If more
differences between reference and IR estimated values f@han 5 9 of the reference values fall outside this range, then the
samples in the validation set. The standard error of validatioRgnfidence limit estimates based on SEC are questionable, and

is sometimes referred to as a standard error of prediction. fyrther testing is required to demonstrate the agreement be-
bias corrected version of this statistic has also been defined §geen the model and the reference method.

the standard error of performance. To avoid confusion betwegn 18.10.2 An alternative method can be used to demonstrate

pri‘:gzd 'Sn tgese_ prdactlcgj. | . b lied halternative method is preferred when the precision of the
o t ent|ze_ residuals testing can € applie t_o N&ference method is not constant across the range of reference
estimates of the validation set to detect possible errors in thgalues used in the calibration, but can be applied even when the
reference _Va'L!eS- . ) .. precision is constant. If R(yis the reproducibility of the
18.7 Validation Bias—The average bias for the estimation
: g reference method at leve|,ythen the percentage of reference

of the validation set, g is calculated as: values for which:
Sy Y w-w - RO <y < G+ R(%) (82)
— j=1 i=1j=1
&= d_ - = (79 is calculated. If 95 % or more of the reference values fall

within this interval, then estimates produced with the multi-
variate IR model agree with those produced by the reference

wherer; is fl if ]lcndlwdual nlaferenﬁe values were used,f or_t'fithemethod as well as a second laboratory repeating the reference
number of reference values that were averaged forithe \cacirement would agree.

validation sample if averages are usegis the total number of o ) _
reference values used in the calculation. 18.11 For multivariate analyses employing surrogate cali-

brations, a procedure similar to that described here for valida-
tion is often performed for the purpose of verifying that the
instrument is properly calibrated. This instrument qualification
5 rE [ v — &2 procedure typically involves the analysis of gravimetrically or
i1 volumetrically prepared mixtures that contain significantly
Ty fewer components than the samples which will ultimately be
(i; -1 analyzed. There is no a priori relationship between the standard

(80)  error that is calculated from this procedure and the error
wherer; is 1 ando?,,, is 0 if individual reference measure- expected during application of the model to actual samples. To
ments are used in calculatifg avoid confusion, it is recommended that the procedure be
referred to as a spectrometer/spectrophotometer qualification,
not validation. Additionally, it is recommended that the stan-
dard error calculated from this procedure be referred to as a
Standard Error of Qualification (SEQ\ogatd, NOt as a Standard
Error of Validation.

i=1

18.8 Standard Deviation of Validation ErrorsThe stan-
dard deviation of the validation errors, SDV, is calculated as

v )2 2
2 ri(e — &)+ oayg

d,-1

18.9 Significance of Validation Bias

18.9.1 At test is used to determine if the validation
estimates show a statistically significant bias.t Aalue is
calculated as:

_lalvd,
t= SDV (81)

19. Precision of Infrared Estimated Values
Thet value is compared to criticalvalues from Table A1.3 for 19.1 The precision of values estimated from an infrared

d, degrees of freedom. multivariate model is calculated from repeated spectral mea-
18.9.2 If thet value is less than the criticalvalue, then  surements. The number of samples for which repeat measure-
analyses based on the multivariate model are expected to giveents is made should be at least equal to the number of
essentially the same average result as measurements conductedables used in the model, and never less than three. The
by the reference method, provided that the analysis represergg@mples used for repeat spectral measurements should span at
an interpolation of the model. least 95 % of the range of concentration or property values
18.9.3 If thet value calculated is greater than the tabulatedised in the model. When possible, samples should be selected
t value, there is a 95 % probability that the estimate from thd0 ensure that some variation on each spectral variable is
multivariate model will not give the same average results as thexhibited among the samples. At least six spectra should be

reference method. Validity of the multivariate model is thencollected for each sample. The spectra should be analyzed and
suspect. Further investigation of the model is required to/alues estimated. The average estimate for each sample should

resolve the probable bias that is indicated. be calculated, and the standard deviation among the estimates
18.10 Validation of Agreement Between Model and Refer-Should be obtained. If; is the estimate for thg" spectrum of
ence Method r; total spectra for th&" sample, then the average estimate for

18.10.1 The confidence limits on the estimates for thehis sample is:
validation samples should be calculated, and a determination "
should be made as to whether the individual reference values ,-Zl
for the validation samples lie within the range from-yx N=

(83)
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19.1.1 The standard deviation of the replicate estimates is 20.2 Sampling Related Errors-Table 2 lists errors arising
calculated as: from sampling problems and possible solutions to these prob-
lems (28).
20.3 Sources of Calibration Erre+Table 3 lists sources of
(84)  error in the development of the calibration model and possible
5 ) ) _ways to minimize these errors.
19.2 Ax” value is calculated using the standard deviation 20 4 Analysis Errors—Table 4 lists factors that can contrib-
values calculated in Eq 81 ute to errors in the estimated values for unknown samples and

,  2.3026 » 5 possible ways to minimize such errors.
=—, (rlogo” - izl ri log o7) (85)

21. Wavelength (Frequency) Sensitivity of a Multivariate
where: Model

- é . (86) 21.1 Wavelength stability of spectrometers is often a critical

i< factor in the performance of a multivariate calibration. The
T estimation of the sensitivity of a multivariate model to changes

2> rof (87)  in the wavelength scale provides a useful parameter against
, which instrument performance can be judged. The wavelength

c= 1+; ( D E,}> (88)  sensitivity of a model can be roughly estimated by the

8z=D\isan 1 following procedure:

andz is the number of samples for which replicate measure- 21.1.1 Identify the samples in the calibration set that repre-

ments were made. sent the extreme values of each of the spectral variables;

19.3 They? value calculated in Eq 85 is compared with a 21.1.2 If the spectra are collected with a digital resolution of
critical value from a chi-squared table (see Table Al.4)tfor A, then shift each spectrum byA-and by -A.
1 degrees of freedom. If the calculatgtivalue is less thanthe ~ 21.1.3 Analyze the shifted spectra, using the calibration
critical value, then all of the variances for the replicatedmodel, and calculate the change in the estimates between the
measurements belong to the same population, and the averatyé and A spectra, and
variance calculated in Eq 87 can be used as a measure of the21.1.4 Identify the spectrum showing the largest change
repeatability of the infrared measurement. The infrared analyupon shifting. If the estimates afe, andy_, respectively,
sis is expected to have a repeatability on the orderof{,/2 the.n the wavelength (frequency) sensitivity of the model can be
5. estimated as:
19.4 If the calculated(® value is greater than the critical 0.1XAXSEC(9,s— 9 a) (89)

chi-squared value, then the repeatability of the infrared esti- 21.2 The value calculated in Eq 89 is the wavelength shift
mate may vary with sample composition. In this case, th h

. _ » _N8hat, in the worst case (the most sensitive spectrum) will
infrared analysis is expected to have a repeatability that is nB

worse than <X /2 X 0., Whereo,., is the maximumo;
value for the replicate measurements.

roduce a change in the estimate that is on the order of 5 % of
the standard error of calibration.

Note 22—The wavelength sensitivity of a model calculated in Section
20. Major Sources of Calibration and Analysis Error

20.1 General Sources of Error in Spectral Measurements TABLE 2 Sampling Related Errors

Table 1 list some possible sources of error that can occur___ Sampling Error Possible Solution
during the Spectra| measurement and potentia| solutions for Nonhomogeneity of Improve mixing guidelines or grinding procedures,
sample or both

these problems. For solids, average replicate repacks

For solids, rotate sample cups
Measure multiple aliquots from large sample

TABLE 1 General Sources of Error in Spectral Measurements volume
Source of Spectral Error Possible Solution Physical variation in solid Improve(_i sample mixing during sample
samples preparation
Poor instrument performance Conduct instrument performance tests Diffuse light before it strikes the sample using a
regularly to monitor changes in instrument light diffusing plate
performance Pulverize sample to particle size of less than 40
Analyze QC (Quality Check) sample to pm (NIR) or 2 um (MIR)
determine if instrument performance Average multiple repacks of each sample
changes affect analysis Rotate sample or average five sample
Absorbance exceeds linear Determine linear response range for measurements
response range instrument Chemical variation in Freeze-dry sample for storage and measurement
Choose pathlengths to keep bands of sample with time Immediate data collection and analysis following
interest in range sample preparation
Optical polarization effects Use depolarizing elements Identification of kinetics of chemical change and
Variable sample presentation Improve sample presentation methods avoidance of rapidly changing spectral regions
Investigate commercially available sample Bubbles in liquid Check pressure requirements for single-phase
presentation equipment samples sample
Optical component Inspect windows, etc., for contamination Check flow properties of cell for sample
contamination and clean as necessary introduction
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TABLE 3 Sources of Calibration Error

Source of Calibration Error

Possible Solution

Spectroscopy insensitive to
component/property being
modeled

Inadequate sampling of
population in calibration set

Outlier samples within
calibration set

Reference data errors

Non-Beer’s Law relationship
(Nonlinearity due to
component interactions)
(Nonlinearity due to instrument
response)

Sensitivity to baseline shifts,
etc.

Transcription errors

Try alternative spectral region

Redefine requirement in terms of
measurable components/properties

Review criteria for calibration set selection
Use sample selection techniques for
selecting calibration set (29)

Employ outlier detection algorithms
Eliminate spectral outliers or find additional
examples

Eliminate reference data outliers or
remeasure

Analyze blind replicates to test precision
Correct procedural errors, improve analytical
procedures

Check and recalibrate reagents, equipment,
etc. (30)

Develop multiple calibrations over smaller
concentration ranges

Check dynamic range of instrument, Try
shorter pathlengths

Preprocessing of data to minimize effects of
baseline

Two people cross-check or one person
triple- check all handscribed data

TABLE 4 Analysis Errors

Sources of Analysis Error

Possible Solution

Poor calibration model

Poor instrument performance

Poor calibration transfer

Sample outside model range

Validate calibration model on representative
validation set

Check performance of instrument/model with
QC samples

Diagnose instrument problems with instrument

performance tests

Validate calibration transfer and instrument
standardization procedures

Select calibrations with lowest noise, wave
length shift sensitivity, and offset sensitivity
Employ outlier statistics to test that sample is
interpolation of model

developed. Instrument standardization can also involve actual
adjustment of the instrument hardware to achieve such agree-
ment. Instrument standardization is one means of achieving
calibration transfer.

22.3 Calibration transfer or instrument standardization may
be required when maintenance is done to an instrument if such
maintenance produces a change in the spectral response large
enough to change the values estimated by the calibration
model. The calibration can be thought of as being transferred
from one instrument (before maintenance) to a second instru-
ment (after maintenance).

22.4 When a calibration transfer or instrument standardiza-
tion procedure is developed, it is necessary to demonstrate that
the performance of the model is not degraded during the
transfer. To demonstrate that a calibration transfer or instru-
ment standardization procedure preserves the performance of a
model, it is necessary to validate the model as described in
Section 18. Each calibration transfer or instrument standard-
ization procedure must be tested at least once by performing a
full validation of the transferred model. Once the success of a
particular calibration transfer or instrument standardization
procedure has been demonstrated for a particular type of
instrument, then quality control samples can be used to
evaluate additional transfers and standardizations.

23. Calibration Quality Control

23.1 When an IR, multivariate, analysis is used to estimate
component concentrations or properties, or both, it is desirable
to periodically test the analysis (instrument and model) to
ensure that the performance of the analysis is unchanged. To
perform such tests, it is sometimes necessary to choose one or
more quality control samples that will be used for this purpose.
A complete discussion of methods used to validate the perfor-
mance of an IR analyzer is beyond the scope of these practices.
The user is referred to Practice D 6122 which discusses
validation of IR analyzers for hydrocarbon analysis, and to

12 will depend on a variety of factors, including the optical and digital Refs 30 and 31 which discuss methods that have gained
resolution of the instrument relative to the bandwidths of the sample beingcceptance within the agricultural community.

measured. Calculation of a wavelength sensitivity is done to provide a 23.2 Control samples (materials for which reference values
useful diagnostic for analyses conducted on the same type of analyzer. Thgyye been measured using the reference method) can be

wavelength stability of the analyzer can be compared to the value in Eq Sémployed to monitor the performance of the analysis, provided
as a means of monitoring the performance of the analyzer. Because th '

value in Eq 83 is dependent on specific instrumental parameters, it shouﬁﬁat the analyses of th_e control samples involve interpolation of
generally not be used to compare the suitability of analyzers for 4n€ model. The IR estimated values for the control samples are

particular application. compared to the reference values using established ASTM
o o procedures or alternative statistical te@8, 32) These tests
22. Calibration Transfer and Instrument Standardization will generally require that the IR estimated values and the
22.1 Calibration transfer refers to a process by which aeference values agree to within the confidence intervals
calibration model is developed using data from one spectromdefined in 15.3. Since the confidence limits are based on SEC,
eter, is possibly modified, and is applied for the analysis ofand since SEC is often dominated by the error in the reference
spectra collected on a second spectrometer. The calibratiaoneasurement, these procedures may not provide the most
transfer may require that spectral data for a common sample @ensitive indication of changes in the performance of the
samples be collected on both instruments, and that somemnalysis. Alternatively, quality control (QC) samples can be
transfer function be developed and applied to the spectra or themployed.
model. A complete description of calibration transfer method- 23.3 Quality control (QC) samples are used to monitor
ologies is beyond the scope of these practices. changes in the performance of an analysis (instrument and
22.2 Instrument standardization is a process where thmodel), after the analysis has been validated. Quality control
spectra collected on a second instrument are mathematicaliyaterials should be identified at the time the model is devel-
adjusted in an attempt to match the spectra that would haveped based on the following criteria:
been collected on the instrument on which the calibration was 23.3.1 QC materials must be chemically and physically
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compatible with materials being analyzed, so as to not intro- 23.6 The use of bias and slope adjustments to improve
duce contaminants into the samples being analyzed, and not ¢alibration or prediction statistics for IR multivariate models is
cause safety problems. generally not recommended. Prediction errors requiring con-
23.3.2 QC materials must be chemically stable when storetinued bias and slope corrections indicate drift in reference
and sampled. If mixtures are used, the composition of thenethod or changes in the instrument photometric or wave-
mixture must be known and methods for reproducing thdength stability. If a calibration model fails during the QC
mixture must be established. monitoring step, the performance of the instrument should be
23.3.3 The spectra of the QC material must be compatiblevaluated using the appropriate ASTM instrument performance
with the model. Absorption bands for the QC material shouldtest, and any instrument problem that is identified should be
not exceed the linear response range of the instrument icorrected. If control samples are used, checks should be
regions used in the calibration model. The spectra of the Q@erformed on the reference method to ensure that reference
material should be as similar as possible to spectra of thealues are correct. If instrument maintenance is performed,
calibration samples. However, analysis of the QC sample caaalibration transfer or instrument standardization procedures,
be an extrapolation of the model. or both, should be followed to reestablish the calibration.
23.4 Spectral data on the QC material is collected during the )
same time period that spectra of the calibration and validatiog#- Model Updating
samples are collected. The QC material should be treated in 24.1 It may sometimes be desirable to add additional
exactly the same fashion as other samples so that variations galibration samples to an existing model to increase the range
the spectra are representative of the variations which will occuef applicability of the model. The new calibration samples may
during the collection of spectra for unknowns. Separatecontain the same components as the original calibration
samples should be used for each measurement. A minimum smples but at more extreme concentrations, or new compo-
20 spectra should be collected. nents not present in the original calibration samples. The new
Note 23—If the QC spectra are collected over too short a time interval,Callmaltlon samples may fill voids in the original calibration

the variation seen in the spectra will be smaller than that typicaIIySpace' . -
encountered in application of the model to unknowns, and QC limits set 24-1.1 When a model is updated, the maixcontaining
based on these spectra will be excessively tight. the original calibration spectra is augmented with the spectra of

the additional calibration samples, and the vegtaontaining
the property or composition values for the calibration samples
is augmented with the values for the additional calibration

23.4.1 The spectra for the QC material are analyzed usin
the calibration model, and the average valyg,iy calculated:

% 5 samples.
_ _i%h (90) 24.1.2 Outlier procedures described in 16.3 must be applied
Yae = g to updated models in the same way they are applied to new

whereq is the number of spectra collected for the QC materialmodels. Thus, if additional samples are being added to increase
The standard deviation in the estimated valugg, is calcu- the span of the calibration, it may be necessary to add several
lated as samples of each new type to avoid the added samples being
rejected as outliers.
24.2 When a calibration model is updated, it must be
(o1 revalidated. The requirements for validation samples for an
updated model are the same as for the original model (see
23.4.1.1 Dixon’'s test can be applied to the individual Section 18). The spectra used to validate the original model can
estimated values to identify outliers in the calculations in Eq 90e used to validate the updated model, but they must be
and Eq 91. supplemented to cover an adequate range as described in 18.2.
23.5 The QC material is analyzed periodically when theThe percentage of new samples added to the validation set for
analysis (instrument and model) is in use for analyzingthe updated model must be at least as large as the percentage of
unknowns. The QC material is treated exactly the same as atew samples added to the calibration set.
unknown sample being estimated. The estimated value for the o o ] )
QC material is compared to,y The estimated value is 25- Multivariate Calibration Questionnaire

expected to be within the range fromy-t X g4 t0 Yo+t X 25.1 The following questionnaire is designed to assist the
04c 95 % of the time, whereis the studentizetivalue forq —1  user in determining if a multivariate calibration conforms to the
df and the 95 % confidence level. requirements set forth in these practices.

23.5.1 If the analysis of the QC material is an interpolation 25.1.1 If all of the following questions in 25.1.3-25.1.7 are

of the model, therr,. should be consistent with the repeat- answered in the affirmative, then the calibration can be said to
ability of the IR analysis as defined in Section 19. If thehave been developed and validated according to E 1655.
analysis of the QC material is an extrapolation of the model, 25.1.2 If any of the following questions in 25.1.3-25.1.7 are
then o, may be somewhat higher than tbe calculated in  answered in the negative, then the calibration can not be said to
Section 19. However, since the control limits are still based orhave been developed and validated according to E 1655. If the
the repeatability of the spectral measurement and do natalibration method is MLR, PCR or PLS-1, the calibration may
depend on the reference method, they are expected generallylie said to have been developed using mathematical techniques
be tighter than those derived from control samples. described in E 1655. ASTM methods that reference E 1655

21



v £ 1655

should not claim calibration or validation via E 1655 unless all 25.1.5.3 Was the number of validation samples greater than
of the following questions would have been answered in thetk if the model was not mean centered, or greater thar4()
affirmative for the procedures followed during the collection of if the model was mean centered? (18.2.3)
round robin data on which the method is based. _ 25.1.5.4 Was the number of validation samples at least 20?
25.1.3 The following questions apply to the mathematlcal(18.2'3)
methodology used in the calibration: . L
25.1.3.1g\>/Vas the mathematical technique used in the cali- 25'1‘5'5 D".j the validation samples span 95 % of the range
bration MLR, PCR or PLS-1? (Sections 12 and 13) of the calibration samples? (18.2.3.1)
25.1.3.2 Did the calibration methodology include the capa- 25.1.5.6 If SEC is the Standard Error of Calibration, do
bility of detecting high leverage outliers using a statistic such®5 % of the results for the validation samples fall within
as the leverage statistib? (16.2) + t-SEC-4/1 + h of the reference values where t is the
25.1.3.3 Did the analysis methodology include the capabilStudentizedt value for n—k degrees of freedorntk-1 for
ity to detect outliers via a statistic such as those based omean centered models), arfd is the leverage statistic?
spectral residuals? (16.4.4-16.4.7) (18.10.1)
25.1.4 The following questions apply to the calibration 25157 Do the validation results show a statistically insig-
model wheren is the number of samples in the calibration set,yificant bias? (18.9.1)
andk is the number of variables (MLR wavelengths, Principal
Components, or PLS latent variables) in the model.
25.1.4.1 Was>6k if the model is not mean centered,or

25.1.6 Was the precision of the model determined using
k = 3 test samples and = 6 replicate measurements per

6(« + 1) if the model is mean centered? (17.5) sample? (Section 19) . _
25.1.4.2 Was the number of samples in the calibration set at 25.1.7 If the calibration and analysis methodology includes
least 247 (17.4) preprocessing or postprocessing, are these calculations per-

25.1.5 The following questions apply to the validation of formed automatically? (Sections 11 and 14)
the model:

25.1.5.1 Was a separate set of validation samples used &6. Keywords
test the calibration? (18.2)

25.1.5.2 Were validation spectra which were outliers based
on either leverage (Mahalanobis Distance) or spectral residuafs’
excluded from the validation set? (18.2.3)

26.1 infrared analysis; molecular spectroscopy; multivariate
alysis; quantitative analysis
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ANNEXES
(Mandatory Information)

Al. STATISTICAL TREATMENT

Al.1 Dixon’'s Test Functions for Rejection of Outliers TABLE Al.1 Critical Values for Rejection of a Discordant
. . . . . Measurement (31)
Al1.1.1 This test provides a simple and highly efficient — - -
method for determining whether all data obtained came from__>%?%st N «=005 « =001
the same population (with unknown mean and standard devia- "o 3 0.941 0.988
. ' : 4 0.765 0.889
tion) and if one or more of the data points are suspect and 5 0.642 0.780
should be rejected. 6 0.560 0.698
A1.1.2 In applying this test the number of determinations ; g-ggz ggg;
(N) are tabulated in increasing order of magnitude and desig- ™ 9 0512 0.635
nated asXy, X,, Xs, . .. X. 10 0.477 0.597
A1.1.3 The values at the extremes of the tabula¥grand 21 o P P
X, are tested in turn in accordance with the number of values 13 0.521 0.615
in the tabulation. Ipa 14 0.546 0.641
15 0.525 0.616
Al1l.2 Select the proper expression shown as follows in 1 P g
accordance with the numbeX) of the values in the tabulation 18 0.475 0.561
and the upper or lower limit to be tested: 19 0.462 0.547
_ 20 0.450 0.535
O““'eTrS Under X, X, 21 0.440 0.524
Fo'rssI:I _ 22 0.430 0.514
- 23 0.421 0.505
3t07 ;o =X o Ko X w) 4 o413 0197
X = X)) (X = X1) 25 0.406 0.489
8t0 10 (X = Xin-q)
L G- X T X o -
Xin-1=X) the historical standard deviation of the test method. Therefore
the samplestandard deviation may be less reliable (because of
1013 X X0 i ) these random fluctuations) than thistorical standard devia-
r= (X(:ﬁ X = %) tion in determining the confidence limits of an average of
' results of several determinations.
14 to 30 r - X(Xa - Xll( RV Al1.6.1 If the historical standard deviation is unknown, the
Kio-2 = %) r= (Xf‘xf’ sample standard deviation may be substituted for it in using the
n 3

nomograph and then multiplying the value found on the 95 %
L scale by the factor given as follows for the number of

Al1.3  Substitute the appropriate values in the equatio X . . i -
pprop g results in the average to obtain reliable 95 % confidence limits.

selected, calculate™ and compare the value obtained to the

i H i No. of Results 3 4 5 6 7
value in Table A1.1 for the appropriate sample stk ( Eontor 5 20 162 2o 131 105
. . No. of Results 8 10 15 25 35
Al.4 Rejectthe value if the calculated’is greater than the  gacior 1.21 115 1.09 1.05 1.04

tabulated value.
Al1.7 To Find the Number of Determinations Needed in an

Al.5 Historical standard deviation as used in Fig. Al.1Average to Give Specific Confidence LimHsay a straight-
means the standard deviation of a test method. It is establishedige across the nomograph so that its edge passes through the
by averaging the standard deviations of many samples testgmbint on the right scale corresponding to the standard deviation
by many laboratories. The samples should cover the range ébr the test and through the desired point on the confidence
usefulness of the test method and should include materials d¢ifmit scale. Read the number of determinations required from
diverse composition if the latter has any effect on the reprothe left scale.

ducibility of results.
A1.8 To Find the Confidence Limits of an Averagélsing

Al.6 Sample Standard Deviatiois merely the standard the number of determinations in the average, lay a straightedge
deviation computed from the data obtained by a group ofrom this point on the left scale through the point on the right
laboratories testing the same sample using the same testale corresponding to the standard deviation. Read the confi-
method. Obviously it may be much lower or much higher thandence limits from the intermediate scale.
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TABLE Al.2 F-Distribution: Degrees of Freedom for Numerator

1 2 3 4 5 6 7 8 9 10 12 15 20
1 161 200 216 225 230 234 237 239 241 242 244 246 248
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4
3 10.1 9.55 9.28 9.12 9.01 8.94 8.87 8.85 8.81 8.79 8.74 8.70 8.66
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80
5 6.61 5.79 5.41 5.19 5.06 4.95 4.88 4.81 4.77 4.74 4.68 4.62 4.56
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44
8 5.32 4.46 4.07 3.54 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94
10 4.96 4.10 3.70 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.55
12 4.75 3.89 3.49 3.26 3.1 3.00 291 2.85 2.80 2.75 2.69 2.62 2.54
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46
14 4.60 3.74 3.34 3.1 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 231 2.23
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 241 2.34 2.27 2.19
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16
20 4.35 3.49 3.10 2.87 271 2.60 251 2.45 2.39 2.35 2.28 2.20 2.12
0 3.84 3.00 2.50 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57
TABLE Al1.3 Table of tat5 % Probability Level
Degrees of Freedom t
1 12.706
2 4.303
3 3.182
4 2.776
5 2,571
6 2.447
7 2.365
8 2.306
9 2.262
10 2.228
11 2.201
12 2.179
13 2.160
14 2.145
15 2.131
16 2.120
17 2.110
18 2.101
19 2.093
20 2.086
TABLE Al1.4 Critical x? Values
Note 1— x? values for { — 1) degrees of freedom and 95 % confidence
level.
(t-1) X (t-1) X (t-1) X (t-1) X
1 3.84 6 12.59 11 19.68 16 26.30
2 5.99 7 14.07 12 21.03 17 27.59
3 7.81 8 15.51 13 22.36 18 28.87
4 9.49 9 16.92 14 23.68 19 30.14
5 11.07 10 18.31 15 25.00 20 3141
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FIG. A1.1 Nomograph for Number of Determinations to Obtain Desired Confidence Limits
A2. STATISTICAL TESTS COMMON TO NIRS METHODS (18, 19) (SUPPLEMENTAL INFORMATION)
A2.1 Common Symbols represent dimensions of vectors and matrices. ltalicized sub-

A2.1.1 Throughout these practices, lowercase letters ar&cripts are sample, wavelength indices. For example:
used to represent scalar quantities. Lower ¢asd letters are
used to represent vectors, and upper dd&¢.D letters are

. o . = Scalar reference value for th8 sample.
used to represent matrices. ltalicized letters are used tal' P
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The estimated y-value foi'" sample based on a between the actual values for the data points and the predicted

regression model. or estimated values for these points are explained by the
y = The mean y value for all samples. calibration equation (mathematical model), and 50 % is not
y = Vector of reference values far samples. explained. Squared values approaching 1.0 are attempted when
X; = Spectral vector of lengthfor the i sample. developing calibrations. R-squared can be estimated using a
X = Matrix of spectra, the rows of X contain the spectra  simple method as outlined as follows.
of lengthf for n samples. o A2.3.2.1 The Ris determined using the equation:
n = Number of samples used in a calibration model.
f = Number of frequencies or wavelengths used in a é V= P —k=1) ¢
calibration model. R2_q_ -t _ SSeg (A2.6)
k = Number of variables used in a calibration model. S - P 1) St
r = Number of replicate measurements on a sample. =T
2 = Capital sigma represents summation of all values a2 322 |fgyis the standard deviation of the errors in the
R2 = chgre"frﬁlc?:g? gf‘hrii(letfll e determination (R-squared) r_efer_ence method measurement, _andis the_stan_dard devia-
R = The simple correIaFtJion coeficient for a Iingar regr.es- tion in the reference values used in the calibration (a measure
: T of the range spanned by the reference data), tfferaRes that
sion for any set of data points; this is equal to the 2 2 S "
exceed 1 -ug“/o~ are probable indications of overfitting of
square root of the R-squared value. the data
b, = The bias or y-intercept value for any calibration : - .
function fit to x, y data. For bias-corrected standard ~A2-3.3 F-Test Statistic for the Regression _
error calculations the bhias is equa| to the difference A2.3.3.1 T_hIS statistic is also termEd F f.OI' regression, Or.
between the average reference analytical values and-squared. F increases as the equation begins to model, or fit,
the IR predicted values. more of the variation within the data. With R-squared held
o constant, the F value increases as the number of samples
A2.2 Statistical Terms increases. As the number wavelengths used within the regres-
A2.2.1 Sum of squares for regression: sion equation decreases, F tends to increase. Deleting an
n unimportant wavelength from an equation will cause the F for
SSeg = iZl()‘/i -2 (A2.1)  regression to increase.

A2.3.3.2 The F-statistic can also be useful in recognizing

A2.2.2 Sum of squares for residual suspected outliers within a calibration sample set; if the

SS,.— i (9 — y)2 A2.2) F-value decreases when a sample is deleted, the sample was
s s not an outlier. This situation is the result of the sample not
A2.2.3 Mean square for regression: affecting the overall fit of the calibration line to the data while
N at the same time decreasing the number of sampje (
S (9 - y)? Conversely, if deleting a single sample increases the overall F
MS,¢g= % (A2.3)  for regression, the sample is considered a suspected outlier. F
_ is defined as the mean square for regression divided by the
A2.2.4 Mean square for residual: mean square for residual (see statistical terms in A1.2).
noo ) A2.3.3.3 The F for the regression is determined by the
2, (= v equation:
MSeg=""1—k=1 (A2.4) i
_RAn-k—1) MSg,
A2.2.5 Total sum of squares: F="1"R% WS (A2.7)
SSy = i (yi— ¥)? (A2.5) A2.3.4 Student’s t-Value (For a Regression):
=t A2.3.4.1 This statistic is equivalent to the F statistic in the
A2.3 Test Statistics determination of the correlation betwegnandy data. It can

A2.3.1 The statistics discussed as follows have most comR€ used to determine whether there is a true correlation

monly been applied to MLR models. The statistics assume th&t€tween an IR estimated value and the primary chemical
the data has been mean centered in developing the modé&nalysis for that sample. Itis used to test the hypothesis that the

Similar statistics can be derived for PCR and PLS models, anf°'elation really exists and has not happened only by chance.
for models that are not mean centered. A large t value (generally greater than ten) indicates a real

A2.3.2 Coefficient of Multiple Determination (statistically significant) correlation betweéhandy.

The coefficient of multiple determination is also termed the A2.3.4.2 The t for regression is calculated as:
R-squared stgtisti_c, or total explained va_ria_tior_L This statistic R\/N-k-1
allows determination of the amount of variation in the data that t= iR (A2.8)

is adequately modeled by the calibration equation as a total

fraction of 1.0. Thus B=1.00 indicates the calibration equa- A2.3.5 Partial F or t-Squared Test for a Regression
tion models 100 % of the variation within the data. An Coefficient:

R? = 0.50 indicates that 50 % of the variation in the differences A2.3.5.1 This test indicates whether the addition of a
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particular wavelength (independent variable) and its correef all regression coefficients. The larger the value, the greater

sponding regression coefficient (multiplier) adds any signifi-is the sensitivity to particle size differences between samples or

cant improvement to an equation’s ability to model the datao the isotropic (mirror-like) scattering properties of samples.

(including the remaining unexplained variation). Small F or tThe offset sensitivity is used to compare two or more equations

values indicate no real improvement is given by adding thdor their “blindness” to offset variation between samples.

wavelength into the equation. Equations with large offset sensitivities indicate that particle
A2.3.5.2 If several wavelengths (variables) have low t or Fsize variations within a data set may cause wide variations in

values (less than 10 or 100, respectively), it may be necessatlje analytical result.

to delete each of the suspect wavelengths, singly or in A2.3.8.2 The ISV is calculated as:

combination, to determine which wavelengths are the most K

critical for predicting constituent values. In the case where an ISV= > b (A2.13)

important wavelength is masked by intercorrelation with an- ot

other wavelength, a sharp increase in the partial F will occur A2.3.9 Random Variation Sensitivity:

when an unimportant wavelength is deleted and where there is A2.3.9.1 This statistic is also termed the index of random

no longer high intercorrelation between the variables stillvariation (IRV). Random variation sensitivity is calculated as

within the regression equation. the sum of the squares of the values of all regression coeffi-
A2.3.5.3 The t-statistic is sometimes referred to as the ratigients. The larger the value, the greater the sensitivity to factors

of the actual regression coefficient for a particular wavelengttsuch as: poor wavelength precision, temperature variations

to the standard deviation of that coefficient. The partial F valugvithin samples and instrument, and electronic noise. The

described is equal to this t value squared; note that the t valu@igher the value, the less likely the equation can be transferred

calculated this way retains the sign of the coefficient, whereasuccessfully to other instruments.

all F values are positive. A2.3.9.2 The IRV is calculated using the expression:
A2.3.5.4 The partial F for a regression coefficient is calcu- K
lated as: IRV = i;\/b_f (A2.14)
SS. (all variables except one- SS(all variables 3
MS.__ (allvariables (A2.9) A2.3.10 Standard Error of the Laboratory (SEL) for Ref

_ erence Chemical Methods:
A2.3.6 The Bias Corrected Standard Error A2.3.10.1 The SEL can be determined by using one or more
A2361 B|aS Corrected Standal’d error measurements a”o%mp|es proper'y a"quoted and ana'yzed in rep"cate by one or

the characterization of the variance attributable to randon’ﬁnore laboratories. The average ana|ytica| value for the rep"_
unexplained error within. The bias value, ts calculated as cates on a single sample is determined as:

the mean difference between reference and IR estimated .
values: Vi = j; Vi (A2.15)

n

1
by = ﬁiz = 9 (A2.10) A2.3.10.2 SEL is given by:

=1

A2.3.6.2 The bias corrected standard error is calculated as: 21,21 ¥y — W

n SEL= A2.16
- 9~ by’ nr =1 he1o
SE = '7# (A2.11)  where thel index represents different samples and jtiredex
- . different measurements on the same sample.
Similar bias corrected values can be calculated for SECV. . P )
A2.3.7 Standard Deviation of Repeatability (SDR) A2.3.10.3 This can apply whether the replicates were per-

A2.3.7.1 SDRis also referred to as the standard deviation dPrmed in a single laboratory or whether a collaborative study
difference (SDD) or standard error of difference for replicateWas undertaken at multiple laboratories. Additional techniques
measurements (SD replicates). The SDR is calculated to allof" Planning collaborative tests can be found in R6f Some
accurate estimation of the variation in an analytical method dugare must be taken in applying Eq. 2.3.16. If all of the
to both sampling, sample presentation, and analysis errors. Tig1alytical results are from a single analyst in a single labora-
SDR can be used as a measure of precision for the referené@Y: then the repeatability of the analysis is defined as
analytical method. V2 t(n (r - 1), 95 %) SEL, where t((r — 1), 95 %) is the

A2.3.7.2 The SDR is calculated using: Student’st value for the 95 % confidence level andr — 1)

degrees of freedom. If the analytical results are from multiple

analysts and laboratories, the same calculation yields the
(A2.12) reproducibility of the analysis. For many analytical tests, SEL

may vary with the magnitude of y. SEL values calculated for

A2.3.8 Offset Sensitivity: samples having different, ycan be compared by an F-test to

A2.3.8.1 Also termed systematic variation or index ofdetermine if the SEL values show a statistically significant
systematic variation (ISV), offset sensitivity is equal to the sunvariation as a function of;y
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